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ABSTRACT

We propose a method for estimating the parameters of SPLICE-
like transformations from individual utterances so that this type
of transformation can be used to normalize acoustic feature vec-
tors for speech recognition on an utterance-by-utterance basis in a
similar manner to cepstral mean normalization. We report results
on an in-house French language multi-speaker database collected
while deploying an automatic closed-captioning system for live
broadcast news. An unusual feature of this database is that there
are very large amounts of training data for the individual speak-
ers (typically several hours) so that it is very difficult to improve
on multi-speaker modeling by using standard methods of speaker
adaptation. We found that the proposed method of feature normal-
ization is capable of achieving a 6% relative improvement over
cepstral mean normalization on this task.
Index Terms: speech recognition, SPLICE, eigenvoice MAP

1. INTRODUCTION

If feature normalization is ever to compensate for all sources
of speaker, environmental and channel variability encountered in
speech recognition then it has to be applied on an utterance-by-
utterance basis. Our aim in this paper is to show how eigenvoice
methods, which have previously been applied only in the model
domain, can be used to derive non-linear transformations for fea-
ture normalization in speech recognition that can be applied to in-
dividual utterances in much the same as cepstral mean normaliza-
tion.

The transformations that we study are smoothed mixture trans-
formation of which one of the earliest examples is SPLICE (origi-
nally developed to deal with environmental mismatches in the Au-
rora databases [1]). The novelty in this paper consists in show-
ing that the parameters of such transformations can be robustly
estimated using much smaller amounts of data than have previ-
ously been envisaged. We report results on an in-house French
language multi-speaker database collected while deploying an au-
tomatic closed-captioning system for live broadcast news. An un-
usual feature of this database is that there are very large amounts of
training data for the individual speakers (typically several hours)
so that it is very difficult to improve on multi-speaker modeling by
using standard methods of speaker adaptation. We found that the
proposed method of feature normalization is capable of achieving
a 6% relative improvement over cepstral mean normalization on
this task.

This work was funded in part by the Canadian Heritage New Media
Research Networks Fund.
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2. MIXTURE TRANSFORMATIONS

ide variety of acoustic feature normalization techniques (in-
ing codeword-dependent cepstral normalization, vector Taylor
s methods and the feature mappings used to compensate for
nel effects in speaker recognition) can be viewed as instances
type of transformation which is defined by a Gaussian mix-
model (GMM) and a collection of offset vectors, one for each
ssian in the GMM. If, for each mixture component c in the
M, the corresponding offset vector is denoted by oc, the type
ansformation we are considering is given by Y → X where

X = Y − oc (1)

c is the mixture component that accounts for Y .
We will refer to such a transformation as a mixture transfor-
on. Note that, in this formulation, the role of the GMM is
odel the distribution of un-normalized speech (Y ) rather than
alized speech (X). In the original SPLICE algorithm, mul-
environment-specific GMM’s were used to model unnormal-
speech but, since our goal is to carry out feature normalization
n utterance-by-utterance basis, we will use a single GMM for
purpose. This GMM can be thought of as a universal back-
nd model (UBM) in the sense in which this term is used in
ker recognition.
We will use the term smoothed mixture transformation to refer
variation on this theme which has received widespread atten-
recently. The idea is to define a a transformation Y → X

re

X = Y −
X

c

P (c|Y )oc (2)

for each mixture component c, P (c|Y ) denotes the poste-
probability of the event that Y is generated by sampling from
aussian distribution corresponding to this component. (These

he probabilities that are calculated in Baum-Welch training of
M’s. If (1) is viewed as a stochastic transformation then the
t hand side of (2) is the expectation of the right hand side of
conditioned on Y .) This is a smooth non-linear transforma-
which is very similar to multi-dimensional interpolation using
al basis functions.
Smoothed mixture transformations have been used to compen-
for environmental noise [1, 2] and inter-speaker variation [3]
to enhance the phonetic discrimination capability of speech
gnizers [4, 5]. In these applications, relatively large amounts
ata are available to estimate the offset vectors oc and research
focused on finding the best criteria for this estimation prob-
(Maximum likelihood, maximum mutual information, mini-
classification error and minimum phone error have all been

ied.)
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3. THE CONNECTION WITH CEPSTRAL MEAN
NORMALIZATION

In this paper we are concerned with another type of application
which can be motivated by considering the case where there is just
one Gaussian in the UBM so that the transformation (2) is defined
by a single offset vector. If, for a given utterance, the offset vector
is estimated by averaging the acoustic features over the length of
the utterance then applying the smoothed mixture transformation
(2) to the observations in the utterance is just cepstral mean nor-
malization (CMN). In the general case, (2) can be viewed as a type
of cepstral subtraction in which the vector to be subtracted varies
from one observation to another (since the posterior probabilities
P (c|Y ) in (2) depend on Y ). This raises the question of whether
(2) can be applied on an utterance-by-utterance basis in the same
way as ordinary CMN.

Implementing this requires estimating a set of offset vectors oc

for an arbitrary utterance. We propose to estimate the offset vec-
tors in such a way that applying (1) or (2) to the observations in
the given utterance will cause them to be distributed according to
the UBM, just as applying CMN to an arbitrary utterance causes
the observations in the utterance to be distributed with mean 0.
This is a reasonable objective because, if the UBM is trained with
a sufficiently large and diverse database, then speaker, environ-
mental and channel effects will be averaged out and the mean vec-
tors in the UBM will reflect only phonetic variability. So, ideally,
normalized utterances will be stripped of speaker, environmental
and channel effects. Histogram normalization techniques such as
Gaussianization are also based on the idea of mapping feature vec-
tors onto canonical distributions. In these approaches the individ-
ual features are treated as if they were statistically independent and
the mapping is implemented by means of scalar quantization. The
idea underlying our approach is to use (soft) vector quantization
instead.

Of course, just as in CMN, care is needed in handling very
short utterances because it is not possible to estimate the offset
vectors reliably in this situation. Similarly, in the case of a UBM
having a large number of Gaussians, so that a large number of
offset vectors have to be estimated, the estimation problem is not
straightforward unless the ‘utterances’ are extraordinarily long. In-
deed the problem is equivalent to estimating utterance dependent
GMM’s which have the same number of Gaussians as the UBM.
For if m denotes the supervector obtained by concatenating the
Gaussians in the UBM and M the supervector derived from an
utterance dependent GMM then

M = m + o (3)

where o is the supervector obtained by concatenating the offset
vectors oc. Since m is known, the problem of estimating o is
equivalent to the problem of estimating M . So the estimation
problem can be thought of either as a problem of estimating a set of
utterance dependent offset vectors or as a problem of estimating an
utterance dependent GMM and we will use these two perspectives
interchangeably.

Maximum likelihood estimation is not capable of dealing with
this type of estimation problem if the number of Gaussians is large.
The results in [3] suggest that, even with 5 minutes of data per
speaker, there is nothing to be gained by using a UBM with more
than 64 Gaussians if maximum likelihood is used as the estima-
tion criterion. Similarly, the authors in [2] limited themselves to
a UBM with only 32 Gaussians. This is consistent with the evi-
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e from text-independent speaker recognition where MAP es-
tion has supplanted maximum likelihood estimation so that
M’s with larger numbers of Gaussians can be handled.
There are some applications of (2) in which extremely large
bers of Gaussians have proved to be useful but there does not

to be any possibility of implementing the corresponding es-
tion algorithms on an utterance-by-utterance basis [4, 5]. In
ore test of the annual NIST text-independent speaker recogni-
evaluations, the enrollment data for a target speaker consists
ngle utterance (such as a Switchboard conversation side). The
t widely used approach to speaker modeling is to use a UBM
1–2 K Gaussians and MAP estimation to estimate a speaker-
ndent GMM of the same size from each target speaker’s en-
ent utterance. This is the approach that we will take here.

Two flavors of MAP estimation that have been used in speaker
gnition are classical MAP [6, 7] and eigenvoice MAP [8].
strengths and weaknesses of these types of MAP estimation
plement each other (see [9] and the references cited there for
mework which embraces both). Classical MAP estimation
ires large amounts of training data and it is asymptotically
valent to maximum likelihood estimation. Because very large
bers of eigenvoices cannot be robustly estimated in practice,
e is no such guarantee for eigenvoice MAP but it is generally
gnized that a modest number of eigenvoices does give good
ates with small amounts of training data. Thus eigenvoice

P is a natural choice for the estimation problem confronting

Basing the procedure for estimating the offset vectors in (2)
igenvoice MAP gives explicit control over the number of free
meters that have to be estimated. (The number of free pa-
eters involved in estimating the eigenvoices is RCF , where

the number of eigenvoices, C the number of mixture com-
nts in the UBM and F the dimension of the acoustic feature

ors. These parameters are estimated from the same database
e UBM. In estimating the offset vectors for a given utterance,
umber of free parameters is just R.) Moreover, the estimation
edure is guaranteed to be well behaved even in the case of very
t utterances (this is the primary reason for using a Bayesian
er than a maximum likelihood estimation criterion). In both of
e respects, our approach to feature normalization differs from
LR (also known as constrained MLLR), which can only be
for utterance-by-utterance normalization in situations where

utterances to be recognized are sufficiently long that they can
sed to reliably estimate affine transformations of the feature
e by maximum likelihood methods. It also differs from stan-
FMLLR in that it does not make use of phonetic transcriptions
at it can be applied blindly at recognition time. (We say ‘stan-
FMLLR’ because the need for transcriptions or word graphs

be avoided by implementing FMLLR with a GMM rather than
M as proposed in [10].)

We will use the term smoothed mixture normalization (SMN)
fer to utterance-by-utterance feature normalization based on

where the offset vectors for each utterance are estimated by
nvoice MAP.

We are guilty of an abuse of language here: eigenvoice MAP as it is
nted in [8] is designed to produce speaker dependent models whereas

re confronted with the task of estimating utterance dependent GMM’s.
igenvoice MAP has to be implemented with utterances playing the role
eakers. This distinction is only pertinent in situations where multiple
ances have been recorded for a speaker.



4. EXPERIMENTS

4.1. Training and test sets

Our experiments were conducted on a multi-speaker database
comprising 22 speakers which was collected while deploying an
automatic closed-captioning system for live broadcast news in
French. (This system is described in a companion paper [11].)
The training data for our experiments consisted of 39 hours of data
collected between October 2004 and April 2005. The test set con-
sisted of 16 hours of data collected from 20 of the 22 speakers
between May and October 2005. This is a very large test set (94
K words) so that small differences in recognition accuracies may
be statistically significant. The training and test utterances for this
task are of highly variable duration (mostly the range 30 seconds
– 5 minutes). Utterances of duration 1 minute or more account for
most of the data and we restricted ourselves to these utterances in
designing our training and test sets.

Our experience with this test set has been that inter-speaker
variation is very well modeled by using mixture distributions hav-
ing reasonably large numbers of mixture components (e.g. 64) so
that we have been unable to obtain performance improvements by
using standard speaker adaptation techniques such as MLLR and
MAP. For example, in an experiment involving four female speak-
ers the only improvement we were able to obtain was an increase
in the percentage of words correctly recognized from 88.2 to 88.3.

4.2. Implementation of CMN

For signal processing we used 12 cepstral coefficients and a log
energy feature together with their first and second derivatives cal-
culated every 10 ms. Silences were removed using a slightly mod-
ified version of the public domain ISIP silence detector.

We implemented a causal version of CMN in order to mini-
mize the delay in producing real-time recognition decisions. The
simplest strategy is to estimate a mean vector μ0 for each speaker
by averaging over the speaker’s training data. A better approach is
to estimate an utterance dependent mean vector for each utterance,
by taking μ0 as the initial estimate and updating it as successive
frames become available. This leads to the following normaliza-
tion procedure which we refer to as real-time CMN and which we
implemented with α = 0.005:

μt = (1 − α)μt−1 + αYt

Xt = Yt − μt (4)

Here, Yt represents the unnormalized feature vector at time t and
Xt the normalized feature vector. Explicitly,

μ
t
= (1 − α)t

μ0 + α

tX

τ=1

(1 − α)t−τ
Yτ (5)

so that μt is a weighted average of μ0 and the observations up to
time t, with the contribution of μ0 decaying exponentially over
time.

Real-time CMN can be applied to the cepstral coefficients
c1, . . . , c12 alone (as in the HTK implementation of file-based
CMN) or it can be applied to the energy feature as well. Our ex-
perience has been that the latter approach is much more effective.
In the the special case where α = 0, the mean vector μ0 is not
updated so we will refer to this case as non-adaptive CMN.

4.3.

Sinc
did
othe
style
way

(esti
Sect
tors
dent
first
distr
colu
utter
the o

whic
tion
com

whe
fied
desc
man
in al

4.4.

For
1000
tion

ing l
a go
ener
resu
tive
show
time
Tabl
resu
who

Tab
resu
Hom

1
2
3
4
5

27

INTERSPEECH 2006 - ICSLP
Implementation of SMN

e SMN (like FMLLR) is basically an off-line procedure we
not attempt to address the causality problem. Except where
rwise indicated, we applied CMN on a file-by-file basis (HTK
) and we used the 39-dimensional features obtained in this
as the starting point for SMN.

We used 200 eigenvoices and a UBM having 512 Gaussians
mated using the multi-speaker training set). As explained in
ion 3, we formulate the problem of estimating the offset vec-
for a given utterance as one of estimating an utterance depen-
GMM supervector M and use the methods in [8]. This entails
estimating a rectangular matrix v of low rank so that the prior
ibution of M has mean m and covariance matrix vv∗. (The
mns of v can be interpreted as eigenvoices.) Then for each
ance, the posterior distribution of M can be calculated using
bservations in the utterance.

The calculations are described in Propositions 1 and 2 of [8]
h can be applied directly provided that the following condi-
is satisfied: For each observation vector Y and each mixture
ponent c,

P (c|X) = P (c|Y ) (6)

re X and Y are related as in (1). If this condition is not satis-
then this problem can be dealt with by the iterative procedures
ribed in Section IV of [8]. We have observed modest perfor-
ce improvements by doing this type of iteration so we used it
l of our experiments with SMN.

Results

each experiment we rebuilt a decision tree having roughly
leaf nodes and we used 64 Gaussians per mixture distribu-

throughout.

Our multi-speaker results are summarized in Table 1. Compar-
ines 1, 2 and 3 shows that real-time CMN is very effective and
od gain in performance can be obtained by applying it to the
gy feature as well as to the the cepstral coefficients. The best
lt was obtained with SMN (line 4) which represents a 6% rela-
improvement over real-time CMN (line 3). The result in line 5
s that SMN works better with file-based CMN than with real-
CMN which is not surprising since SMN is an offline method.
e 2 breaks out the result in line 4 over the 20 test speakers. The
lts here show that there are a few goats among our speaker set
have resisted our attempts at feature normalization.

le 1. Different types of feature normalization. Multi-speaker
lts. The test set consists of 94 K words uttered by 20 speakers.
ophone confusions are counted as errors.

Adaptation Type Accuracy (%)

Non-adaptive CMN including energy 78.1
Real-time CMN excluding energy 80.9
Real-time CMN including energy 82.5
File-based CMN + SMN 83.6
Real-time CMN including energy + SMN 83.0



Table 2. Breakdown of the result in line 4 of Table 1 showing the
number of words spoken by each speaker (N ), the percentage of
words correctly recognized and the percentage accuracies. Homo-
phone confusions are counted as errors.

speaker Correct (%) Accuracy (%) N

abr 84.09 79.89 2859
ala 92.33 90.12 7370
cla 87.64 85.47 833
dle 87.83 85.06 5670
dup 83.84 80.97 9462
imi 87.48 85.56 727
jbe 88.51 86.14 7763
jfb 85.35 82.47 6596
jub 88.99 86.92 4495
kba 90.34 88.38 6345
kbl 90.74 88.50 3174
kbr 81.03 77.35 6146
lec 86.30 83.37 7701
lha 87.88 82.81 1617
mfr 92.46 90.15 5715
mnj 80.71 76.64 762
mru 82.70 77.35 8006
sgo 68.72 64.61 7129
sla 90.64 89.18 1368

5. DISCUSSION

In this paper we have shown how to use eigenvoice methods to esti-
mate smoothed mixture transformations for feature normalization
in speech recognition that can be applied to individual utterances
in the same way as cepstral mean normalization. We obtained a
6% (relative) reduction in error rates on a multi-speaker task using
this method. On the face of it, this is not a very large improvement
but since there are no perceptible mismatches between the train-
ing and test set in our experimental set up and standard methods
of speaker adaptation have proved to be ineffective on this task,
this is a satisfying result. It would be interesting to experiment
with smoothed mixture normalization on more challenging tasks
where there is substantial speaker and channel variability such as
the Switchboard and Fisher databases.

Eigenvoice methods were originally developed for HMM
model adaptation in speech recognition but we have had a good
deal more success in applying them to GMM’s in text-independent
speaker recognition [9]. The reason for this appears to be that
when eigenvoice methods are applied with HMM’s rather than
GMM’s, errors in phonetic transcriptions and weaknesses in deci-
sion tree based triphone modeling introduce a source of variability
which is not low-dimensional (contrary to the primary assumption
of eigenvoice modeling). This motivated us to study the question
of whether it might be possible to find a way of using eigenvoice
based estimation of GMM’s in speech recognition by working in
the feature domain rather than the model domain. The advantages
of working in the feature domain are well known, namely that there
is no need to create speaker or utterance adapted HMM’s at recog-
nition time and speaker adaptive training can be carried out very
easily. The approach that we have developed has the additional
advantages that it can be applied blindly at recognition time (since
it does not rely on phonetic transcriptions) and it behaves robustly
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hort utterances (since it is based on MAP estimation).
The problem we have addressed in this paper is that of feature
alization for speech recognition where the goal is to remove
speaker and channel effects from individual utterances. Fea-
normalization for speaker recognition presents a rather more
le challenge since the goal in this situation is to remove chan-
ffects but keep speaker effects intact. In a very interesting in-
ndent development, the authors in [12] have shown how meth-
similar to those presented here can be successfully applied to
problem.
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