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Abstract

A speech enhancement algorithm is proposed that exploits the
masking properties of the human auditory system. The enhance-
ment is formulated as a frequency domain constrained optimiza-
tion problem. The noise components of the noisy speech are sup-
pressed by a gain function subject to the constraint that both the
signal distortion and residual noise should fall below the mask-
ing thresholds. Temporal as well as simultaneous masking ef-
fects are incorporated into the estimation of masking thresholds.
The enhancement algorithm was tested with speech corrupted by
white Gaussian and multitalker babble noise, respectively. Its
performance was evaluated by ITU PESQ scores and segmental
SNR. Experimental results indicate that the proposed gain func-
tion performs slightly but consistently better than a former percep-
tually motivated enhancement algorithm. Greater improvement is
achieved by incorporating the temporal masking effects.
Index Terms: speech enhancement, psychoacoustical model, tem-
poral masking.

1. Introduction
The goal of speech enhancement is to reduce listener’s fatigue or
to improve the speech signal prior to its presentation to automatic
speech recognition systems. For single channel speech degraded
by additive noise, it is advantageous to incorporate auditory mod-
els into enhancement methods so that the residual distortions are
inaudible or less objectionable. Psychoacoustical models were ini-
tially proposed for high quality audio coding [1]. Their applica-
tions in speech enhancement can be found in [2–6]. In [2], the
masking thresholds are derived and used as contraints in solving
a frequency domain constrained optimization problem. [3] intro-
duces an auditory model in a spectral subtractive-type of enhance-
ment algorithm. [4] deduces a Frequency-to-Eigendomain Trans-
formation (FET) that maps the masking thresholds to the eigen
domain, enhancement is then performed by applying an eigenfil-
ter. In [5], the Fourier domain masking thresholds are transformed
to the Discrete Cosine Transform (DCT) domain by bark filtering
and enhancement is achieved by a subspace approach.

The aforementioned enhancement algorithms [2–5] estimate
the masking thresholds by exploiting simultaneous masking ef-
fects. Since the human auditory system has temporal as well as
simultaneous masking properties [8], it is worthwhile investigating
both of these masking effects on speech enhancements. In a pre-
vious attempt [6], Kalman filtering was used to enhance the noisy
speech, and a post-filter that incorporates the temporal masking
was then applied to the pre-enhanced speech.
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In this paper, we introduce a frequency domain method that in-
orates temporal as well as simultaneous masking effects into
enhancement process. The proposed scheme minimizes the
ch distortion subject to the constraint that both the signal dis-
on and residual noise are inaudible. The magnitude spectra
he noisy speech are modified by a gain function such that
speech distortion and residual noise are suppressed below the
king thresholds. In the calculation of masking thresholds, tem-
l masking aspects are explicitly included in the auditory model
stimating the decay of the internal loudness in the human hear-
system [8].

2. The proposed method
Deduction of the Optimal Gain

sider a clean speech signal x corrupted by uncorrelated addi-
noise n. The noisy observation y can be modeled as

y = x + n (1)

re y, x and n are N × 1 vectors. By applying a N -point Short
e Fourier Transform (STFT) to the noisy speech, we have

Y = F H
y = F H

x + F H
n = X + N (2)

re F H denotes the N ×N Discrete Fourier Transform matrix,
is matrix Hermitian. Y, X and N are the Fourier transforms

oisy speech, clean speech and noise respectively.
Let X̂ = GY be a linear estimator of the clean speech X,
re G is an N × N matrix. The estimation error is

r = X̂ − X = εx + εn (3)

re εx � (G − I)X denotes the spectrum of speech dis-
on and εn � GN is the spectrum of residual noise. Let

E{εx
Hεx} be the energy of the frequency domain speech

rtion. The energy of the kth spectral component of speech
rtion and residual noise is defined as ε2

x,k = E{|εx,k|
2} and

= E{|εn,k|
2} respectively. Finding the optimum linear es-

tor G can be formulated as solving the following constrained
mization problem:

min
G

ε̄2
x (4a)

subject to: ε2
x,k + ε2

n,k ≤ αk, k = 1, . . . , N (4b)

ere αk are some preset thresholds (αk ≥ 0). For perceptu-
motivated speech enhancement, these thresholds αk can be
qual to the masking thresholds Tk at frequency ωk.
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It should be noted that a similar problem formulation is pro-
posed in [2]. Our method differs because both the signal distortion
and residual noise are included in (4b), while the constraints used
in [2] are only

subject to: ε2
n,k ≤ αk, k = 1, . . . , N. (5)

We propose the use of constraint (4b) instead of (5) because it is
perceptually more meaningful. In the best scenario, if both the
speech distortion and residual noise are masked, there will be no
audible distortions in the enhanced speech. However, as stated
in [7], in most real cases a complete masking of both components
cannot be guaranteed because of the fact that the minimum of the
estimation error is greater than zero for non-trivial signals. The
proposed approach masks both components of the estimation error
whenever it is possible. This aggressive suppression of the esti-
mation error will ensure the best possible quality of the enhanced
speech.

The optimization problem (4) can be solved by using the
method of Lagrangian multipliers [9]. Specifically, G is a sta-
tionary feasible point if it satisfies the gradient equation of the La-
grangian

J(G, μk) = ε̄2
x +

NX
k=1

μk(ε2
x,k + ε2

n,k − αk) (6)

and

μk(ε2
x,k + ε2

n,k − αk) = 0, for k = 1, . . . N (7)

where μk ≥ 0 is the kth Lagrangian multipler for the kth compo-
nent of εx and εn. From ∇GJ(G, μk) = 0 we obtain

(I + Λμ)GF HRxF + ΛμGF HRnF = (I + Λμ)F HRxF (8)

where Λμ = diag(μ1, . . . , μN ) is a diagonal matrix. The matri-
ces F HRxF and F HRnF are asymptotically diagonal provided
the matrices Rx and Rn are Toeplitz [2]. The diagonal elements
of matrices F HRxF and F HRnF are the power spectrum com-
ponents Sx(ωk) and Sn(ωk) of the clean speech and noise respec-
tively [2]. The optimum linear estimator can be obtained by solv-
ing the matrix equation in (8). One possible solution is obtained
when G is a diagonal matrix with elements

gkk =
Sx(ωk)

Sx(ωk) + Sn(ωk) μk

(1+μk)

=
γ(k)

γ(k) + βk
(9)

where γ(k) = Sx(ωk)/Sn(ωk) is known as the a priori SNR at
frequency ωk, and βk = μk/(1 + μk). For this G, the kth spectral
component of speech distortion and residual noise is

(gkk − 1)2Sx(ωk) + gkk
2Sn(ωk). (10)

Assuming the constraints (4b) are satisfied with equality and the
thresholds αk = Tk, then

(gkk − 1)2γ(k) + gkk
2 = Qk (11)

where Qk = Tk/Sn(ωk). (11) is a quadratic equation in gkk and
has two roots. By imposing the condition μk ≥ 0, we retain only
one root as the optimum gain

gb
kk =

γ(k) +
p

γ(k)(Qk − 1) + Qk

γ(k) + 1
, Qk ≤ 1. (12)

For
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this gain function (12), we have

μb
k =

γ(k) − γ(k)
p

γ(k)(Qk − 1) + Qk

(γ(k) + 1)
p

γ(k)(Qk − 1) + Qk

. (13)

pk = γ(k)(Qk−1)+Qk. It can be readily verified that μb
k ≥ 0

n Qk ≤ 1 and pk ≥ 0. The gain gb
kk in (12) is complex

n pk < 0. In this case, the phase of the noisy speech spectral
ponents will be modified. However, it has been a common
tice in speech enhancement not to alter the phase of the noisy
ch. Therefore, we use the gain gkk = gn

kk when pk < 0,
re

gn
kk =

p
Qk, Qk ≤ 1 (14)

e gain obtained by solving the constrained optimization prob-
(4a), (5) and is used in [2]. If Qk > 1, this means Sn(ωk) <
In other words, the residual noise is masked at frequency ωk.
then use gkk = 1. This choice of gkk will result in zero signal
rtion. In summary, the proposed gain function is

gp
kk =

8<
:

1, Qk > 1
gb

kk, Qk ≤ 1, pk ≥ 0
gn

kk, Qk ≤ 1, pk < 0.
(15)

n be verified from (12), (14) and (15) that the proposed gain is
ded by 0 < gp

kk ≤ 1. For a gain function that falls within this
e, the minimum energy of the speech distortion and residual
e as given by (10) is achieved with the Wiener gain

gw
kk =

γ(k)

γ(k) + 1
. (16)

paring (9) with (16) and noticing that 0 ≤ βk < 1, it can be
fied that the proposed gain is larger than the Wiener gain gw

kk.
(10), we can see that the larger the gkk value, the smaller the

al distortion. On the other hand, increasing gkk will increase
level of the residual noise. The motivation to use the gain as
5) is to introduce minimum signal distortion while aggres-

ly suppressing the speech distortion and residual noise below
asking thresholds.

Masking Thresholds

simultaneous masking thresholds can be estimated by the
G4 psychoacoustical model [1]. The temporal masking phe-

enon is known to occur when one sound (maskee) is masked
e time before and after the presentation of another stronger sig-
(masker) [8] (pre-masking and post-masking). Post-masking
s a dominant role in non-simultaneous masking [8]. The
unt of post-masking depends on the duration, energy level and
uency content of the masker [12]. The post-masking level de-

faster for maskers with shorter duration and higher energy
l, while longer post-masking is observed after signals with rel-
ly long duration and low energy level. This effect can be mod-
more easily in terms of the decay of the specific loudness

nst critical band index and time. The specific loudness can be
ated by (Chapter 8 of [8])

= 0.08(
ETQ

E0
)0.23[(0.5 +

E

2ETQ
)0.23 − 1]

soneG

Bark
(17)

re ETQ is the excitation at the threshold in quiet and E0 is the
tation of the reference sound with intensity 10−12W/m2. E is



the excitation of the masker signal and N is the specific loudness
it produces.

The duration-dependent decay of postmasking can be simu-
lated by filtering the specific loudness in (17) with the RC circuit
proposed in [12]. The total loudness is then obtained by

N∗ =
X

f

WfNf (18)

where N∗ is the total loudness of the current frame, f is the sub-
band index, and Wf is the bandwidth in bark of each subband as
defined in the MPEG-4 standard [1].

The final masking thresholds for each subband are then deter-
mined by [6]

T (t, f) = max(Ts(t, f), T (t − 1, f)e−Δt/τ(f)N∗

) (19)

where T (t, f) is the final masking threshold of the current frame,
and t is the frame index. Ts(t, f) is the simultaneous masking
thresholds of the current frame. T (t − 1, f) is the final mask-
ing threshold of the previous frame. Δt is the time shift between
adjacent frames. τ(f) is the maximum decay time constant for
each subband. The total loudness N∗ is normalized by the total
loudness of a 40 dB SPL uniform masking noise (UMN). If N∗ is
larger than one, it is set to one so that the value of N∗ lies in the
range of zero to one.

In summary, we take the following steps to incorporate the
temporal masking effects into the psychoacoustical model. First,
the simultaneous masking thresholds are computed via the MPEG-
4 model. Second, the specific loudness is estimated by (17). Third,
the specific loudness is processed by the RC circuit in [12]. Then,
the total loudness is obtained by (18). Finally, the ultimate mask-
ing thresholds of current frame is determined by (19).

3. Implementation
3.1. Spectrum Estimation

As stated in [2], the accuracy in the estimation of clean speech
spectrum and noise spectrum is crucial to the performance of
the speech enhancement algorithm. In our implementation, the
noisy speech spectrum is estimated by the multitaper wavelet-
denoising method proposed in [2]. For noise spectrum estimation,
the minimum-statistics tracking method proposed in [10] is used.
The clean speech spectrum is then obtained by

Ŝx(ω) =

j
Swt

y (ω) − Ŝn(ω), Swt
y (ω) > Ŝn(ω)

δŜn(ω), Swt
y (ω) ≤ Ŝn(ω)

(20)

where Swt
y (ω) is the spectra of noisy speech estimated by the mul-

titaper wavelet-denoising method. Ŝn(ω) is the estimated noise
power spectra and δ = 0.025 is a zero-flooring parameter.

3.2. Masking Thresholds Calculation

The simultaneous masking thresholds are calculated from the es-
timated clean speech spectrum Ŝx(ω). The MPEG-4 psychoa-
coustical model at the sampling rate 8 kHz is used. The values
for the RC circuit components are R1 = 35kΩ, R2 = 20kΩ,
C1 = 0.7μF and C2 = 1.74μF [12].
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4. Experimental Results
comparison purposes, the enhancement method in [2] was also
lemented. 60 sentences taken from the TIMIT database were
nsampled to 8 kHz and used in the tests. The noise sources

downloaded from the IEEE Signal Processing Information
e [11]. Two types of noise were used, namely white Gaussian
e and multitalker babble noise. The noise was scaled in energy
l and added to the downsampled clean speech to generate noisy
ch with SNR in the range of −5 to 10 dB.
The enhancement was applied to 32 ms of noisy speech with a
overlap between adjacent frames. The enhanced speech was

ined by the overlap-and-add method. For a fair comparison,
MPEG-4 psychoacoustical model was used by both methods.
enhancement algorithms were evaluated by ITU-PESQ (Per-
ual Evaluation of Speech Quality) scores and segmental SNR.
In order to assess the individual contributions of the proposed
function (15) and the temporal post-masking (19), four im-
entations were tested, namely, the frequency domain simulta-
s masking method (SM) [2], the frequency domain simulta-
s masking with the proposed gain function (SMPG) (15), the
osed post-masking method (TM) (19) and the proposed gain
post-masking method (TMPG).

Fig. 1 shows the average PESQ scores of 60 unenhanced noisy
ches degraded by white Gaussian/babble noise, and the PESQ
es of their enhancement outputs. Fig. 2 depicts the average
ental SNR of the same 60 enhanced speechs. Comparing Fig.

d 2, it can be seen that the improvement is more prominent in
Q scores than in segmental SNR. This is because the proposed
od is motivated by improving the perceptual quality rather
exactly reconstructing the speech waveforms, and the ITU-

Q score is a more precise measurement of subjective quality
the segmental SNR. From Fig. 1(a) and 2(a), we can see that
ugh the segmental SNRs converge at the input SNR of 10 dB

white Gaussian noise, there still exists notable differences in
Q scores. Informal listening tests indicate that the speeches
nced by the TMPG method sound more crispy than the SM
od. From both Fig. 1 and 2, it can be verified that the methods
the proposed gain (PG) function perform slightly but consis-

y better than the methods without the PG. In other words, the
G is slightly but constistenly better than the SM method, so

he TMPG and TM methods. However, methods incorporating
post-masking effects (the TM methods) provides significant
rovements at all input SNR for both white and babble noise.

5. Conclusion
equency domain speech enhancement algorithm is proposed.
magnitude spectra of the noisy speech are weighted by a gain
tion that tries to keep both the signal distortion and resid-

noise below the masking thresholds. In the calculation of the
king thresholds, the proposed method incorporates not only the
ltaneous masking, but also the temporal post-masking aspects
e human auditory system. The enhancement algorithms were
d with speech corrupted by white Gaussian and multitalker
le noise. Experimental results indicate that the proposed gain
tion achieves slight but consistent performance improvements
the method that suppresses the residual noise only. The pro-
d algorithm is shown to be more perceptually meaningful af-

ncorporating post-masking effects. Moreover, enhancement in
ch quality is more pronounced in terms of ITU PESQ scores.
her improvements could be obtained by implementing a more
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robust noise power spectrum estimator for highly dynamic noise.
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Figure 1: Average PESQ Scores of 60 sentences
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Figure 2: Average Segmental SNR of 60 sentences
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