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Abstract

A speech enhancement algorithm is proposed that exploits the
masking properties of the human auditory system. The enhance-
ment is formulated as a frequency domain constrained optimiza-
tion problem. The noise components of the noisy speech are sup-
pressed by a gain function subject to the constraint that both the
signal distortion and residual noise should fall below the mask-
ing thresholds. Temporal as well as simultaneous masking ef-
fects are incorporated into the estimation of masking thresholds.
The enhancement algorithm was tested with speech corrupted by
white Gaussian and multitalker babble noise, respectively. Its
performance was evaluated by ITU PESQ scores and segmental
SNR. Experimental results indicate that the proposed gain func-
tion performs slightly but consistently better than a former percep-
tually motivated enhancement algorithm. Greater improvement is
achieved by incorporating the temporal masking effects.

Index Terms: speech enhancement, psychoacoustical model, tem-
poral masking.

1. Introduction

The goal of speech enhancement is to reduce listener’s fatigue or
to improve the speech signal prior to its presentation to automatic
speech recognition systems. For single channel speech degraded
by additive noise, it is advantageous to incorporate auditory mod-
els into enhancement methods so that the residual distortions are
inaudible or less objectionable. Psychoacoustical models were ini-
tially proposed for high quality audio coding [1]. Their applica-
tions in speech enhancement can be found in [2-6]. In [2], the
masking thresholds are derived and used as contraints in solving
a frequency domain constrained optimization problem. [3] intro-
duces an auditory model in a spectral subtractive-type of enhance-
ment algorithm. [4] deduces a Frequency-to-Eigendomain Trans-
formation (FET) that maps the masking thresholds to the eigen
domain, enhancement is then performed by applying an eigenfil-
ter. In [5], the Fourier domain masking thresholds are transformed
to the Discrete Cosine Transform (DCT) domain by bark filtering
and enhancement is achieved by a subspace approach.

The aforementioned enhancement algorithms [2-5] estimate
the masking thresholds by exploiting simultaneous masking ef-
fects. Since the human auditory system has temporal as well as
simultaneous masking properties [8], it is worthwhile investigating
both of these masking effects on speech enhancements. In a pre-
vious attempt [6], Kalman filtering was used to enhance the noisy
speech, and a post-filter that incorporates the temporal masking
was then applied to the pre-enhanced speech.
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In this paper, we introduce a frequency domain method that in-
corporates temporal as well as simultaneous masking effects into
the enhancement process. The proposed scheme minimizes the
speech distortion subject to the constraint that both the signal dis-
tortion and residual noise are inaudible. The magnitude spectra
of the noisy speech are modified by a gain function such that
the speech distortion and residual noise are suppressed below the
masking thresholds. In the calculation of masking thresholds, tem-
poral masking aspects are explicitly included in the auditory model
by estimating the decay of the internal loudness in the human hear-
ing system [8].

2. The proposed method
2.1. Deduction of the Optimal Gain

Consider a clean speech signal x corrupted by uncorrelated addi-
tive noise n. The noisy observation y can be modeled as
y=x+n )]
where y, x and n are N x 1 vectors. By applying a N-point Short
Time Fourier Transform (STFT) to the noisy speech, we have
Y=F'y=Ffx+Fn=X+N )
where FH denotes the N x N Discrete Fourier Transform matrix,
()™ is matrix Hermitian. Y, X and N are the Fourier transforms
of noisy speech, clean speech and noise respectively.
Let X = GY be a linear estimator of the clean speech X,
where GG is an N x N matrix. The estimation error is
r:XfX:Eeren 3)
where ex 2 (G — I)X denotes the spectrum of speech dis-
tortion and £, = GN is the spectrum of residual noise. Let
€2 = E{ex™ex} be the energy of the frequency domain speech
distortion. The energy of the kth spectral component of speech
distortion and residual noise is defined as £ , = E{|ex,x|’} and
2 1 = E{|en,x|?} respectively. Finding the optimum linear es-
timator G can be formulated as solving the following constrained
optimization problem:

(4a)

min 6_,2(
G
subject to: si,k + Ei}k < ag, k=1,...,N (4b)

where «y, are some preset thresholds (o > 0). For perceptu-
ally motivated speech enhancement, these thresholds oy can be
set equal to the masking thresholds 7}, at frequency wy.
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It should be noted that a similar problem formulation is pro-
posed in [2]. Our method differs because both the signal distortion
and residual noise are included in (4b), while the constraints used
in [2] are only

k=1,...,N. 4)
We propose the use of constraint (4b) instead of (5) because it is
perceptually more meaningful. In the best scenario, if both the
speech distortion and residual noise are masked, there will be no
audible distortions in the enhanced speech. However, as stated
in [7], in most real cases a complete masking of both components
cannot be guaranteed because of the fact that the minimum of the
estimation error is greater than zero for non-trivial signals. The
proposed approach masks both components of the estimation error
whenever it is possible. This aggressive suppression of the esti-
mation error will ensure the best possible quality of the enhanced
speech.

The optimization problem (4) can be solved by using the
method of Lagrangian multipliers [9]. Specifically, G is a sta-
tionary feasible point if it satisfies the gradient equation of the La-
grangian

subject to: sf,,k < ag,

N
J(Gopr) =2+ pnlEn +enk — ©)

k=1

Ozk)

and

0, for k=1,...N (1)

where p;, > 0 is the kth Lagrangian multipler for the kth compo-
nent of ex and en. From Vg J(G, i) = 0 we obtain

Nk(Ei,k + Ei,k —o) =

(I+A)GF"R,F+ A, GF"R,F = (I +A,)F"R,F (8)

where A, = diag(p1, ..., pn) is a diagonal matrix. The matri-
ces FAR,F and F* R, F are asymptotically diagonal provided
the matrices R, and R, are Toeplitz [2]. The diagonal elements
of matrices F¥ R, F and F” R,, F are the power spectrum com-
ponents Sy (wy) and Sy (wy) of the clean speech and noise respec-
tively [2]. The optimum linear estimator can be obtained by solv-
ing the matrix equation in (8). One possible solution is obtained
when G is a diagonal matrix with elements

Sx(wk)
Sx (wk) + Sn (wk

v(k)
~v(k) + B

®

Ikk = ) Lk
(k)
where (k) = Sx(wk)/Sn(wk) is known as the a priori SNR at

frequency wy, and B = px /(1 + uk ). For this G, the kth spectral
component of speech distortion and residual noise is

). (10)

Assuming the constraints (4b) are satisfied with equality and the
thresholds o, = T}, then

(gre — 1)*y(k) + grr” = Qx (11)

where Qr = Tk /Sn(wk). (11) is a quadratic equation in gy, and
has two roots. By imposing the condition pr, > 0, we retain only
one root as the optimum gain

k) + /v(k)(Qr — 1) + Q
v(k) +1 ’

(grre — 1) Sx(wr) + grk” Sn(wr

b

Jrk = Qr<1. (12
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For this gain function (12), we have

v(k) = v(k)\/~(k)
(v(k) + 1)/~ (k)

Let pr = v(k)(Qr—1)+Qx. It can be readily verified that z%, > 0
when Qr < 1 and pr > 0. The gain g% in (12) is complex
when p;, < 0. In this case, the phase of the noisy speech spectral
components will be modified. However, it has been a common
practice in speech enhancement not to alter the phase of the noisy
speech. Therefore, we use the gain grr, = ¢j; when pr < 0,

where
gik = V Qk, Qr <1 (14)

is the gain obtained by solving the constrained optimization prob-
lem (4a), (5) and is used in [2]. If Q% > 1, this means Sy (wk) <
Ti.. In other words, the residual noise is masked at frequency wy.
We then use gir = 1. This choice of gix will result in zero signal
distortion. In summary, the proposed gain function is

(Qr — 1) +Qk

(13)
YQr — 1) +Qr

b
Hi

17 Qk > 1
9 =2 gh, Qu<1,pr>0 (15)

It can be verified from (12), (14) and (15) that the proposed gain is
bounded by 0 < g7, < 1. For a gain function that falls within this
range, the minimum energy of the speech distortion and residual
noise as given by (10) is achieved with the Wiener gain

v(k)

W. (16)

Gk =
Comparing (9) with (16) and noticing that 0 < 5 < 1, it can be
verified that the proposed gain is larger than the Wiener gain g;, .
From (10), we can see that the larger the g, value, the smaller the
signal distortion. On the other hand, increasing gxx will increase
the level of the residual noise. The motivation to use the gain as
in (15) is to introduce minimum signal distortion while aggres-
sively suppressing the speech distortion and residual noise below
the masking thresholds.

2.2. Masking Thresholds

The simultaneous masking thresholds can be estimated by the
MPEG4 psychoacoustical model [1]. The temporal masking phe-
nomenon is known to occur when one sound (maskee) is masked
some time before and after the presentation of another stronger sig-
nal (masker) [8] (pre-masking and post-masking). Post-masking
plays a dominant role in non-simultaneous masking [8]. The
amount of post-masking depends on the duration, energy level and
frequency content of the masker [12]. The post-masking level de-
cays faster for maskers with shorter duration and higher energy
level, while longer post-masking is observed after signals with rel-
atively long duration and low energy level. This effect can be mod-
elled more easily in terms of the decay of the specific loudness
against critical band index and time. The specific loudness can be
estimated by (Chapter 8 of [8])

E

soneg
2FTq

N = 008(EETQ)° 21(0.5 + Bark

0

)0.23 . ] (17)

where Frq is the excitation at the threshold in quiet and Fy is the
excitation of the reference sound with intensity 10™2W/m?. Eis
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the excitation of the masker signal and NV is the specific loudness
it produces.

The duration-dependent decay of postmasking can be simu-
lated by filtering the specific loudness in (17) with the RC circuit
proposed in [12]. The total loudness is then obtained by

N*=> "W;Ny (18)
f

where N™ is the total loudness of the current frame, f is the sub-
band index, and W is the bandwidth in bark of each subband as
defined in the MPEG-4 standard [1].

The final masking thresholds for each subband are then deter-
mined by [6]

T(t, f) = maz(To(t, ), T(t = 1, e 7O 19)
where T'(t, f) is the final masking threshold of the current frame,
and t is the frame index. T%(¢, f) is the simultaneous masking
thresholds of the current frame. T'(t — 1, f) is the final mask-
ing threshold of the previous frame. At is the time shift between
adjacent frames. 7(f) is the maximum decay time constant for
each subband. The total loudness N is normalized by the total
loudness of a 40 dB SPL uniform masking noise (UMN). If N* is
larger than one, it is set to one so that the value of N* lies in the
range of zero to one.

In summary, we take the following steps to incorporate the
temporal masking effects into the psychoacoustical model. First,
the simultaneous masking thresholds are computed via the MPEG-
4 model. Second, the specific loudness is estimated by (17). Third,
the specific loudness is processed by the RC circuit in [12]. Then,
the total loudness is obtained by (18). Finally, the ultimate mask-
ing thresholds of current frame is determined by (19).

3. Implementation
3.1. Spectrum Estimation

As stated in [2], the accuracy in the estimation of clean speech
spectrum and noise spectrum is crucial to the performance of
the speech enhancement algorithm. In our implementation, the
noisy speech spectrum is estimated by the multitaper wavelet-
denoising method proposed in [2]. For noise spectrum estimation,
the minimum-statistics tracking method proposed in [10] is used.
The clean speech spectrum is then obtained by

R B S;Ut(w _ gn(w% S;,“t(w) > S'n(w)
Sx() ‘{ 58n(w), W) < Gul)

where Sy’ £(w) is the spectra of noisy speech estimated by the mul-

titaper wavelet-denoising method. Sn(w) is the estimated noise
power spectra and § = 0.025 is a zero-flooring parameter.

3.2. Masking Thresholds Calculation

The simultaneous masking thresholds are calculated from the es-
timated clean speech spectrum Sx(w). The MPEG-4 psychoa-
coustical model at the sampling rate 8 kHz is used. The values
for the RC circuit components are R1 = 35k(2, R2 = 20k,
C1=0.7uF and C2 = 1.74uF [12].
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4. Experimental Results

For comparison purposes, the enhancement method in [2] was also
implemented. 60 sentences taken from the TIMIT database were
downsampled to 8 kHz and used in the tests. The noise sources
were downloaded from the IEEE Signal Processing Information
Base [11]. Two types of noise were used, namely white Gaussian
noise and multitalker babble noise. The noise was scaled in energy
level and added to the downsampled clean speech to generate noisy
speech with SNR in the range of —5 to 10 dB.

The enhancement was applied to 32 ms of noisy speech with a
50% overlap between adjacent frames. The enhanced speech was
obtained by the overlap-and-add method. For a fair comparison,
the MPEG-4 psychoacoustical model was used by both methods.
The enhancement algorithms were evaluated by ITU-PESQ (Per-
ceptual Evaluation of Speech Quality) scores and segmental SNR.

In order to assess the individual contributions of the proposed
gain function (15) and the temporal post-masking (19), four im-
plementations were tested, namely, the frequency domain simulta-
neous masking method (SM) [2], the frequency domain simulta-
neous masking with the proposed gain function (SMPG) (15), the
proposed post-masking method (TM) (19) and the proposed gain
plus post-masking method (TMPG).

Fig. 1 shows the average PESQ scores of 60 unenhanced noisy
speeches degraded by white Gaussian/babble noise, and the PESQ
scores of their enhancement outputs. Fig. 2 depicts the average
segmental SNR of the same 60 enhanced speechs. Comparing Fig.
1 and 2, it can be seen that the improvement is more prominent in
PESQ scores than in segmental SNR. This is because the proposed
method is motivated by improving the perceptual quality rather
than exactly reconstructing the speech waveforms, and the ITU-
PESQ score is a more precise measurement of subjective quality
than the segmental SNR. From Fig. 1(a) and 2(a), we can see that
although the segmental SNRs converge at the input SNR of 10 dB
for white Gaussian noise, there still exists notable differences in
PESQ scores. Informal listening tests indicate that the speeches
enhanced by the TMPG method sound more crispy than the SM
method. From both Fig. 1 and 2, it can be verified that the methods
with the proposed gain (PG) function perform slightly but consis-
tently better than the methods without the PG. In other words, the
SMPG is slightly but constistenly better than the SM method, so
do the TMPG and TM methods. However, methods incorporating
the post-masking effects (the TM methods) provides significant
improvements at all input SNR for both white and babble noise.

5. Conclusion

A frequency domain speech enhancement algorithm is proposed.
The magnitude spectra of the noisy speech are weighted by a gain
function that tries to keep both the signal distortion and resid-
ual noise below the masking thresholds. In the calculation of the
masking thresholds, the proposed method incorporates not only the
simultaneous masking, but also the temporal post-masking aspects
of the human auditory system. The enhancement algorithms were
tested with speech corrupted by white Gaussian and multitalker
babble noise. Experimental results indicate that the proposed gain
function achieves slight but consistent performance improvements
over the method that suppresses the residual noise only. The pro-
posed algorithm is shown to be more perceptually meaningful af-
ter incorporating post-masking effects. Moreover, enhancement in
speech quality is more pronounced in terms of ITU PESQ scores.
Further improvements could be obtained by implementing a more
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robust noise power spectrum estimator for highly dynamic noise.
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