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Abstract
Error-corrective post-processing (ECPP) has great potential to 
reduce speech recognition errors beyond that obtained by 
speech model improvement. ECPP approaches aim to learn 
error-corrective rules to directly reduce speech recognition 
errors. This paper presents our investigation into one such 
approach, incremental learning of maximum a posteriori (MAP) 
context-dependent edit operations. Limiting our dataset to 
spoken telephone number recognition output, we have evaluated 
this approach in an automotive environment using an embedded 
speech recognizer in a mobile device. We have found that a 
reduction of approximately 44~49% in speech recognition string 
errors can be achieved after learning. 
Index Terms: error correction, post-processing, speech 
recognition

1. Introduction
Traditionally, speech recognition research has focused on 
building better speech models. The most common approaches, 
derived from HMM theory, simplify speech modeling by 
making several primitive assumptions (the Markov assumption, 
the output independence assumption, etc.). Needless to say, 
tremendous progress has been made to date in spite of these 
assumptions [1]. However, it is reasonable to speculate that 
building better models based on such premises places a severe 
limitation on performance improvement. In order to overcome 
this limitation, we are shifting our focus away from building 
better speech models. One direction which bears great potential 
is error-corrective post-processing (ECPP). Corrective models 
are derived from errors generated by a state-of-the-art speech 
recognition system. The resulting model post-processes speech 
recognition output to further improve speech recognition 
performance. The fundamental difference between this approach 
and previous approaches to improve acoustic or language 
models is that it is not bound by frameworks or assumptions 
rooted in current models of speech. 

In general, ECPP assumes that speech recognition output 
is an erroneous version of the truth 

, that is, it is received at the other end of 
an erroneous communication channel. 
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[2] and [3] have 
attempted to invert the channel similar to the statistical machine 
translation solution in [4], where W is considered to be 

translated from W  using a set of machine translation features, 
such as word translation, word fertility, and word reordering. 
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ter training their post-processor iteratively on a speech 
ognition training set, the authors found that this approach, 
ich predicts a word based on an error-corrected history, leads 
a better language model than the approach based on a history 
t has not undergone error correction. In [5], a W -to-
version is realized by applying a series of context-
ependent word re-ranking transforms at each word position 
. The transforms are obtained as follows: the word lattice of 
 speech recognition output is first realigned to form a 
fusion network; then, word re-ranking transforms are 

rned at each word position in the confusion network and the 
ition’s acoustic and linguistic features by minimizing 

ference (or error) between the transformed speech 
ognition output and the truth. In 

ˆ W

Ŵ W

Ŵ

[7], a -to-  conversion 
accomplished by applying a set of context-independent edit 
rations on ; these include insertion, deletion and 
stitution. The cost of each operation is learned based on the 
ng edit distance [8] in a training set. Then, the edit distance 
used as Bayes risk in a minimum Bayes-risk decoding 
mework [7] to rescore the N-best speech recognition outputs. 
nificantly, these previous attempts in ECPP rely on context-
ependent learning in a system based on batch learning during 
ining. In other words, their post-processors are trained on a 
 of speech recognition errors before deployment. 
In contrast, the present strategy assumes that speech 

ognition errors are better characterized in their contexts. 
us, our post-processor learns to correct errors incrementally 
ng context-dependent information. For some errors, such as 
se due to imperfect mathematical assumptions and 
ufficient training data, whether the post-processor is trained 
ore or during deployment matters little. However, because 
ors may also be due to mismatches between the training and 
loyment environments and domains, we believe incremental 

rning is preferable to batch learning for our error-corrective 
t-processor.
In the next section, we describe our framework of maximum
osteriori (MAP) error-edit operations. In section three, we 
ine the incremental learning of MAP edit operations strategy 
t we employ. The performance of our error-corrective post-
cessor is evaluated in section 4. As indicated earlier, this 
luation is based on a spoken telephone number task in an 
omotive environment – which is one of the most significant 
lications of speech recognizers embedded in mobile devices. 
ally, we offer conclusions in section 5. 
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2. MAP Context-Dependent Edit 
Operations and Decoder 

2.1. MAP context-dependent edit operations 
The statistical channel model for ECPP can be generally 
expressed as . A MAP solution of such a system is:  )ˆ|( WWP

)ˆ|(maxarg WWPW
W

 (1) 

Now, if we assume that W and are systematically related, 
the problem can then be viewed as an exercise in machine 
translation. In light of this assumption, the above equation can 
be solved using a greedy search approach [9], where W  is an 
initial guess. This solution searches through a set of very 
complex modifications on W  that include word replacement, 
fertility, and reordering. This search usually requires many 
iterations. However, if we assume that  is an erroneous 
version of W , then a set of simple edit operations (insertion, 
deletion and substitution) at each word position suffices to make 
the -to-  conversion 

ˆ W

ˆ

ˆ

Ŵ

Ŵ W [7][8]. Furthermore, we assume that 
edit operations are statistically independent of neighboring 
words in  and that posterior probabilities are statistically 

dependent in  (context-dependency). Thus, we have:  
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where V is vocabulary; _ is a null symbol; E is a collection of 
edit operations: insertion (ins), deletion (del) and substitution 
(sub);  is the joint probability of j),ˆ|,( N

iij Cwewp th word (or 
null symbol) in truth and an edit operation, e, conditioned on the 
ith word of the speech recognition output and its context .
The superscript N is the parameter of the context window to 
indicate that the window size is N words to the left and N words 
to the right at the i

N
iC

th word of the speech recognition output. 

2.2. Decoding of MAP context-dependent edit 
operations
Due to the assumption of statistical independence of edit 
operations, decoding in (2) can be performed in one pass from 
left-to-right. However, the drawback of one-pass decoder is that 
it requires the estimation of a large number of conditional 
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babilities (at most
12

)12(
N

VV , where V is

abulary size), which implies a huge storage and search space 
 more data for robust model estimation. These variables are 
y sensitive issues for an algorithm which is destined to be 
plemented in an embedded platform. We therefore improve 
 decoding process by making two approximations. First, the 
ertion operation is divided into two operations: (i) inserting a 
l symbol in speech recognizer output , and (ii) 
stituting the null symbol with a word. Second, the deletion 
ration is approached by substituting a word with a null 
bol in truth W . With these approximations, the set of edit 
rations is reduced to inserting a null symbol and substituting 
ord with an expanded vocabulary (original vocabulary plus a 
l symbol). These modifications allow for an efficient two-
s decoder which we describe below.

Ŵ

In the first pass through the speech recognizer output W
m left-to-right, the conditional probability of inserting a null 

bol after each word  is evaluated. If the 
bability is larger than a predefined threshold, a null symbol 
nserted after the i

ˆ

),ˆ|(_, N
ii Cwinsp

th word in W . This pass alters the speech 

ognizer output, denoted . In the second pass through the 

red speech recognizer output W , we compute 

ˆ
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 at each position. 

is the expanded vocabulary. Null symbols are then 

oved to derive the MAP approximation of truth 

_],[* V
W .

nsequently, the two-pass decoder has at most 
12

)1()2
N

V  conditional probabilities and a reduced 

rch space. It is worth noting that the possible error(s) of 
erting a null symbol introduced in the first pass can be 
rected by substituting the null symbol by itself in the second 
s. In a practical implementation of the above two-pass 
oder, there will obviously be a large number of contexts 
ich never or only rarely appear. To handle both data 
rseness and robust estimation, we applied the Laplace 
imate of the probabilities. We gave preference to substituting 
ord with itself, when there is a tie among the probabilities. 

3. Incremental Learning of Posterior 
Probabilities of Edit Operations 

remental learning of ECPP is an unobtrusive way of 
structing a system based on errors observed while the user 

eracts with the speech recognizer. Initially, the post-processor 
s not make any change to speech recognizer output. This is 
ause all edit-operation probabilities are the same and 
ference is given to substituting a word with itself. When a 
 pair of truth and speech recognition output  is given, 

., collected from the user’s manual correction of previous 
n-machine dialogue results, the pair is aligned word-by-word 
ng dynamic programming. Then, both W and are
anded as follows: a null symbol is inserted in W  when 

etion is required, while a null symbol is inserted in  when 

W Ŵ

Ŵ

Ŵ



insertion is required. For example, suppose the speech 
recognition output is 12234, while the truth is 12345. In the 
speech recognition output, we want one of the 2s to be deleted 
and a 5 to be inserted at the end. Therefore, the truth and the 
speech recognition output are expanded to 12_345 and 12234_,
respectively. Note that after the expansion, both word sequences 
have the same length and one-to-one alignment. From W  and 
its expansion, we update the probabilities required for insertion 
in the first pass, either by accumulation or recursion. From the 
pair of expansions of W  and , we update the probabilities 
required for substitution in the second pass either by 
accumulation or recursion. As mentioned above in 2.2, deletion 
can be approximated by substituting a word in W  expansion 
with a null symbol. Therefore, we do not need to consider 
deletion probabilities separately in our model. 

ˆ

ˆ W

ˆ

4. Experiments
The performances of the MAP context-dependent edit 
operations are evaluated in a spoken telephone number 
recognition application in automotive environments. The corpus 
types used in this evaluation are actual US telephone numbers 
and extensions of variable lengths (4, 7, 10 and 11). These are 
collected from multiple car types traveling at various driving 
speeds. SNR varies from 15dB to -5dB due to the adversity of 
the conditions. The database comprises utterances from 138 
users and their corresponding speech recognition output. Each 
user produced 290 telephone numbers. The speech recognition 
outputs are generated by a Motorola proprietary embedded 
speech recognition engine, MLite++. We use a digit loop 
grammar and speaker-independent acoustic models; the 
footprint is limited due to the recognizer’s embedded 
implementation. The baseline performance of speech 
recognition outputs of the database is 80% digit string accuracy 
(or 96.95% word accuracy). The truth used in the following 
experiments is database’s manual transcriptions. 

Figure 1 Average digit string error reduction due to 
error-corrective post-processing in speaker-dependent 

experiments with context parameter N=2.

The first experiment evaluates speaker-dependent 
performance, i.e., applying our error corrective post-processor 
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ter suited for mobile device applications, since a mobile 
ice is typically used by a minimum number of users, usually 
. Figure 1 plots the digit string error reduction percentage 
raged over 138 speakers with the contextual parameter N=2.

 shown in the figure, the error-corrective post-processor is 
e to correct more speech recognition errors when it learns 
m more utterances. After 290 utterances, the system reaches 
9% digit string error reduction.

Speaker-Dependent Experiments with Variable 
Contexts
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Figure 2 Average digit string error reduction due to 
e

In the second experiment, we evaluate the effect of 
textual information in MAP context-dependent edit 

ecognition

rror-corrective post-processing in speaker-dependent
experiments while varying the context parameter from 

N=0 to N=2.

rations. Figure 2 plots the average digit string error 
uctions while varying contextual parameters (N) from zero to 
. ECPP does not provide any error correction in the context-
ependent case (N=0). However, in both a left and right single 
rd context (N=1), it provides a significant jump in terms of 
ng error reduction. Widening the context to two words to the 
t and two words to the right (N=2) improves the performance 
n more. From these results, we determine that context is an 

portant attribute in such ECPP. There is a trade-off, however: 
reasing the context leads to a significant increase in memory 
sumption and requires more data for robust estimation. This 

de-off was attested when we further widened the context to 
3 and N=4; average digit string error reduction did not differ 
nificantly from when N=2, while memory consumption was 
nificantly increased. We do not elaborate the results of 
ther widening the context to limit our discussion. 
To gain further insight, we divided the speech r

put digit errors into categories according to the edit 
rations performed, i.e., insertion, deletion and substitution. 
Figure 3, we plot the average digit error reduction in each 
or category. Figure 3 suggests that MAP operations make the 
st digit error reductions in substitution errors followed by 
ertion errors. Error reduction in deletion category is virtually 
o. This is not very surprising because deletion errors were 
 very frequent in the database and the two-pass decoder 
roximated the deletion operation by insertion and 
stitution.
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e

 In our final experiment, we evaluate the performance of the 
erro

rror categories in speaker-dependent experiments with
N=2.

r-corrective post-processor in speaker-independent 
experiments, i.e., a single error-corrective post-processor is used 
for all speakers. For this purpose, we randomly ordered samples 
from all speakers into one giant sequence, and then applied the 
error-corrective post-processor to the sequence. Figure 4 plots 
the percentage of digit string error reduction. As in the speaker-
dependent experiments, the system is able to incrementally 
learn MAP edit operations to correct speaker-independent errors. 
In the end, it can reach a digit string error reduction rate of 
about 44%. However, it is obvious though that the system learns 
much more slowly in speaker-independent experiments than in 
speaker-dependent ones. Moreover, the system occasionally 
generates errors instead of correcting them in speaker-
independent experiments (displayed as negative spikes in Figure 
4).

Speaker Independent Experiment
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5. Conclusion
 have investigated one version of ECPP for speech 
ognition, specifically, context-dependent error correction 
remental model learning. We have introduced a framework 
MAP context-dependent edit operation for automatic 

rection of speech recognition errors and a resource-saving 
-pass decoder for embedded implementation. We 
onstrated that our error corrective post-processor achieves 

nificant error reduction (44~49%) in spoken telephone 
ber recognition in a very adverse automotive environment, 

 that the impressive performance gain is chiefly because it 
ies on context-dependent information. Furthermore, 
remental learning allows the post-processor to develop while 
rs are interacting with the embedded speech recognizer. As a 
sequence, the error corrective post-processor is derived not 
y from acoustic model errors but also any mismatch between 
ech recognition training and deployment. Such improvement 
speech recognition cannot be currently achieved by simply 
lding a better acoustic model. 
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