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Abstract

We present a flexible dual channel noise reduction algorithm
that combines the information of two microphone channels in
the discrete Fourier transform domain. This algorithm can cope
with substantially different signal-to-noise ratios at different time-
frequency bins in both channels. The output is obtained by com-
bining the outputs of two single channel filters and a dual channel
filter weighted by the probability of speech presence. The algo-
rithm has a low latency and does not require any additional infor-
mation such as the microphone positions.
Index Terms: multichannel speech enhancement, speech presence
probability.

1. Introduction
In recent years, the usage of digital mobile communication de-
vices such as cell phones and hearing aids has increased rapidly.
In mobile scenarios we often have to deal with noise, e.g. bab-
ble or vehicle noise. Consequently, there is an increased need for
noise reduction (NR) algorithms. Many NR algorithms apply a
gain function in the discrete Fourier transform (DFT) domain to
estimate the clean speech coefficients [1]. The gain function is
commonly derived by assuming a certain distribution of the clean
speech DFT coefficients. This distribution is parameterized by the
signal-to-noise ratio (SNR), which is computed for instance by us-
ing the decision-directed approach [1]. Furthermore, an additional
weighting function which indicates the probability of speech pres-
ence is usually applied, and allows distinct treatment for the cases
of speech presence or absence [1, 2, 3].

In adverse conditions like automotive environments, improved
NR is desirable. Here, multiple microphones may be used, e.g.
two microphones in the sunvisor, or one at the A-pillar and one at
the rear view mirror. Here, the relative positioning of the micro-
phones may not be known. Furthermore, one microphone may be
severely disturbed at times, e.g. because it is close to a fan or other
noise sources. Therefore, the benefit of the additional microphone
is a priori unknown.

This paper presents a dual-channel algorithm that addresses
these problems. The contribution of each microphone channel to
the output is controlled by the probability of speech presence at
each channel in each time-frequency (TF) point. At TF points
where one channel is superior, that channel dominates the output.
In case the speech presence probabilities of the two channels are
similar, the information of both channels is combined to gain opti-
mal noise reduction. While the proposed scheme will only be de-
scribed for two microphones the algorithm can easily be extended
for more than two microphones.
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2. The Signal Model
NR system uses two microphone channels and the DFT to
pute spectral coefficients on short signal segments. The short-
Fourier transforms (STFT) of the input channel signals y1(t)
y2(t) are denoted as Y1(k, l) and Y2(k, l), where k and l in-
te the frequency and time indices, respectively. Each channel
ontains a certain amount of noise, Nm(k, l). Speech, S(k, l),
be present in each channel. When speech is present, the signal

ach microphone will differ in phase, Δφ(k, l), and amplitude,
, l). Speech presence at channel m and each TF-point (k, l)
dicated by H1

m(k, l). Since the whole system works in STFT-
ain, the argument (k, l) may be dropped. Thus, our model has

following form:

H1
1 : Y1 = S + N1speech presence:

H1
2 : Y2 = ASe−jΔφ + N2

H0
1 : Y1 = N1speech absence:

H0
2 : Y2 = N2 .

(1)

3. Soft Decision Combining
ed on (1), four joint hypotheses can be derived:

(H1
1 , H0

2 ) Speech is only present in channel one

(H0
1 , H1

2 ) Speech is only present in channel two

(H1
1 , H1

2 ) Speech is present in both channels

(H0
1 , H0

2 ) Speech is present in neither channel

erent NR filters are used for each joint hypothesis. The out-
of all four filters are combined using a soft decision approach.

es’ theorem is used to compute the conditional probabilities of
joint hypotheses. For instance, for (H1

1 , H0
2 ) we obtain:

P (H1
1 , H0

2 |Y1, Y2) =
p(Y1, Y2|H

1
1 , H0

2 )P (H1
1 , H0

2 )

p(Y1, Y2)
. (2)

ost acoustic scenarios the two microphone signals will be sim-
However, we explicitly aim at exploiting potential differences,

chieve an enhanced output signal at TF-points where one chan-
is superior. Thus, we assume independence of the two micro-
ne channels, as well as independence of the real and imagi-

parts of the speech and noise DFT coefficients. Under these
mptions, the joint probabilities as in equation (2) can be fac-
d, and the soft weights for the four joint hypotheses be written

W10 = P (H1
1 , H0

2 |Y1, Y2) ≈
Λ1

1 + Λ1

1

1 + Λ2

W01 = P (H0
1 , H1

2 |Y1, Y2) ≈
1

1 + Λ1

Λ2

1 + Λ2
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W11 = P (H1
1 , H1

2 |Y1, Y2) ≈
Λ1

1 + Λ1

Λ2

1 + Λ2

W00 = P (H0
1 , H0

2 |Y1, Y2) ≈
1

1 + Λ1

1

1 + Λ2

, (3)

where Λm are generalized likelihood ratios, defined as:

Λm =
P (H1

m)

P (H0
m)

p(Ym|H1
m)

p(Ym|H0
m)

. (4)

For this we require to model the priors qm = P (H0
m) = 1 −

P (H1
m), and the distributions p(Ym|H1

m) and p(Ym|H0
m).

3.1. Modelling the pdf of the input channels

The distribution of the DFT coefficients of speech and noise is as-
sumed to have a Gaussian probability density function (pdf). This
does not hold for small frame sizes as usually used in mobile com-
munications, where the pdf becomes more heavy-tailed [4]. How-
ever, the Gaussian assumption is still used because it is compu-
tationally less expensive. Also the experiments presented in [4]
showed that the statistical model used in speech presence uncer-
tainty weighting has only a minor impact on the speech quality.
Thus, the pdfs are modelled as follows:

p(Ym|H0
m) =

1

πσ2
Nm

exp {−γm} (5)

p(Ym|H1
m) =

1

πσ2
Nm

1

1 + ξm

exp

{
−γm

1

1 + ξm

}
, (6)

where σ2
N is the noise variance estimated using minimum statis-

tics [5], γm = |Ym|2/σ2
Nm

is the a posteriori SNR and ξm =

σ2
Sm

/σ2
Nm

is the a priori SNR, as gained by the decision directed
approach [1]. Thus, from equations (4), (5) and (6) we obtain:

Λm =
1 − qm

qm

1

1 + ξm

exp

{
γmξm

1 + ξm

}
. (7)

3.2. Modelling the prior probabilities

The prior probabilities, qm = P (H0
m) = 1 − P (H1

m), should be
chosen independent of an observation. They provide a bias in favor
of either speech presence or speech absence. The prior speech
absence probability q should not be set higher than 0.5, because
that would favor the case of speech absence. Thus, at low SNRs,
speech may be suppressed. To account for this, in [1] q is set as low
as 0.2. This means however, that in cases where speech is absent
and the a priori SNR is zero, the resulting conditional probability
of speech absence would not be larger than P (H0

m|Ym) = 0.2.
However, for our algorithm a proper detection of speech absence
is crucial, i.e. this probability should be close to 1 when speech
is absent. This may be achieved by tracking a priori SNRs based
on the observation [2, 3]. For our purposes, however, we find that
setting the priors to qm = 0.5 and limiting the SNR in eq. (7) to
be higher than ξmin = 9 dB, leads to the desired result.

4. Noise Reduction
For all four joint hypotheses we consider different gain functions
that yield four different outputs. To allow a correct superposition
of the outputs we need to adjust for the phase difference, Δφ, of
the two channels.

4.1.
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Phase Estimation

in [6], we estimate a dual channel phase compensation term
g the instantaneous frequency dependent phase estimate when
ch is present, and the relative time delay τ when speech is ab-
. The relative time delay τ is estimated by searching for the
imum value of the cross-correlation of the two input channels
ng speech activity, and stored for pauses. The phase compen-
on factor at each TF-point results in:

ejΔφ = (1 − W11)e
jkω0τ + W11

Y1Y
∗

2

|Y1| |Y2|
, (8)

re W11 is the probability that speech is present in both chan-
, as defined in (3). In [6] this weight is only based on the a
ri SNRs, ξm. The a priori SNRs are usually gained using the

ision-directed approach [1], and adapt rather slowly. Therefore,
ch pauses are not instantly detected, and phase estimates may
be based on the instantaneous phase difference. This is unrea-

able during speech absence and yields a distorted output signal.
ever, our weights are based on both the a priori and the a pos-

ori SNR. They thus adapt faster and avoid this problem. Note,
it is crucial that the speech presence weights, W11, actually

roach zero during speech absence, to avoid speech distortions
to unreliable instantaneous phase estimates (section 3.2).

Both channels contain only noise

en speech is absent in both channels we leave some residual
e for a natural sounding result. For this, we combine both
t channels and attenuate the resulting coefficients, YLN, by a

stant factor α. The combination is done according to the noise
er of the two channels, as:

YLN = ζY1 + [1 − ζ]Y2e
jΔφ , (9)

re the weighting factor ζ is gained as:

ζ =
σ2

n2

σ2
n1 + σ2

n2

. (10)

factor ζ is smoothed over time and frequency to avoid perceiv-
switching effects. The resulting coefficients, YLN, are domi-

d by the channel with the lower noise power at each TF-point.

Only one channel contains speech

he two cases where we detect speech in only one channel, we
single channel noise reduction gain functions. E.g. the spectral
litude MAP estimator as derived in [7] can be used:

Gsgle
m =

ξm

2(ξm + 1)

[
1 +

√
1 +

1 + ξm

ξmγm

]
. (11)

Both channels contain speech

oth channels contain speech, we want to use the information of
channels for an optimal noise reduction. A summation of the
channels, after a correct phase adjustment, will increase the
ut SNR by up to 3 dB. This signal combination may be done

er before or after noise reduction. Using the former method a
le channel gain function (section 4.3) is computed on a signal
an increased SNR, yielding less musical tones during speech

ence. However, we decided for the latter, because the multi-
nnel filters adapt faster, and thus yield lower speech distortion.



A multichannel MAP estimator is derived in [8]. For the two chan-
nel case we have:

Gdual
1 =

ξ1

1 + ξ1 + ξ2

[
1 +

√
γ2ξ2

γ1ξ1

]
, (12)

Gdual
2 =

ξ2

1 + ξ1 + ξ2

[
1 +

√
γ1ξ1

γ2ξ2

]
. (13)

5. Overall Algorithm and Example
The resulting algorithm is depicted in Figure 1. The input signals
are transformed into the DFT domain using a Kaiser window of
length 256 at a sampling rate of 8 kHz, and an overlap of 50%.
The shaping parameter is 5.5. For synthesis we use a Hann/Kaiser
window.
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Ỹ
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Figure 1: The two channel soft decision combining algorithm

Figure 2 demonstrates the potential of our algorithm. A
speech signal (Figure 2(a)) is recorded inside a car with an inter-
microphone spacing of 20 cm (this information is not used by our
algorithm). Vehicle noise, recorded with the same setup, is added
afterwards so that the global input SNR is 10 dB. This test signal
is now further modified, to demonstrate the performance in some
extreme cases. The resulting spectrograms of the two microphone
channels may be seen in Figure 2(b). During the first 5 seconds
of this test signal, noise is added at different frequency bands for
the two channels. In the remaining 2.5 seconds speech is missing
at different time frames of the two channels. Figure 2(c) shows
the weights used for soft decision combining and Figure 2(e) the
resulting single channel output signal. Except for the frequency
bins where narrow-band noise is added, the SNR is similar in both
channels during the first 5 seconds. Consequently, the soft-weight
W11 is close to one where speech is present, allowing the infor-
mation in both channels to be used (section 4.4). At the frequency
band around 2.5 kHz, channel 1 is disturbed by additional noise.
Here, mostly channel 2 will contribute to the output signal. This
may be seen in the soft-weights: W01 is close to one during speech
presence, which means that single channel noise reduction will be
performed upon channel 2. The equivalent behavior may be ob-
served at the frequency band around 1.5 kHz, where channel 2
is corrupted. Here, single channel noise reduction is performed
on channel 1. For the residual noise, the channel with the lower
noise power shall be used (section 4.2). Indeed, ζ is close to zero
where channel 1 is corrupted and close to one where channel 2 is
corrupted (Figure 2(d)). In the last 2.5 seconds of the example,
speech is missing at different time frames in the two microphone
channels. It may be seen in Figure 2(c), that the soft-weights accu-
rately choose the channel where speech is present. Speech is well
reconstructed in the output signal, as may be seen in Figure 2(e).
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(a) Clean speech (channel 1)
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(b) Dual channel inputs Y1 and Y2
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(c) Soft decision weights
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(d) ζ according to (10)
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(e) Output Ỹ

Figure 2: Demonstration of the algorithm in the TF-plane



6. Evaluation
For the evaluation, we draw on the intelligibility weighted seg-
mental SNR (iwsSNR). We use the shadow filtering approach, i.e.
the same filters applied to the noisy signals Ym are applied on the
speech and noise signal separately. The filtered signals are indi-
cated by a tilde. The iwsSNR is computed as follows:

iwsSNR =
1

L

L∑
l=1

ku∑
k=kl

wSII(k)

[
10 log

S̃l(k)

Ñl(k)

]+35

−20

(14)

The intelligibility weighting factor wSII is defined such that equal
weight is given for each auditory critical band between kl =
300 Hz and ku = 6400 Hz [9]. Since our example has a sam-
pling frequency of 8 kHz we set wSII to give equal weights to the
bands between kl = 300 Hz and ku = 4000 Hz. The segmental
SNRs are restricted to be between -20 and +35 dB.

For the evaluation, we use 40 seconds of test data from the
TIMIT database and white noise, to achieve results that are easy
to reproduce. The phase difference between the channels is zero,
i.e. the speakers are located at the broadside of the array (this in-
formation is not used by our algorithm). Uncorrelated white gaus-
sian noise is added to both microphone channels. At two differ-
ent critical bands of the two channels we increase the noise level
additionally. This procedure ensures, that the overall iwsSNR is
approximately equal in both microphone channels, while the local
SNR in the critical bands differ. We corrupt the 8th critical band in
channel 1 (1270-1480 Hz), and the 10th critical band in channel 2
(1720-2000 Hz). White noise is added according to an iwsSNR
of 21 – 2.5 dB. Independent of this background noise, the noise in
the subbands is increased according to a fixed equivalent broad-
band SNR1 of 0 dB and -20 dB. The results are shown in Table 1.
We list the iwsSNR before and after NR for the cases that only
white noise is present and for two cases where noise is increased
in auditory critical subbands. We compare three different NR al-
gorithms. First we state the results of single channel NR using
speech presence uncertainty. Due to the symmetry of the noisy in-
put signals, the output iwsSNRs are similar for both channels, and
their mean is stated. The second algorithm we refer to as “dual ch
[8]”, is based on the multichannel MAP estimator according to [8].
Here, it is assumed that speech is always present in both channels,
i.e. W11 = 1 while all other soft weights are zero. Finally, we
state the results of the novel soft decision combining algorithm.
If both channels are similar, the dual channel algorithms increase
the iwsSNR by 1-2 dB as compared to the single channel filters2.
When noise is added at different subbands of the two channels,
the dual channel algorithm according to [8] performs worse than
a single channel NR algorithm, because both corrupted subbands
contribute to the output. This case, when the two channels differ
at different TF-bins, is when our novel soft decision combining al-
gorithm is most powerful. It will pick the best of both channels,
and outperform the other considered algorithms by several dBs,
depending on how much the two channels differ.

1The equivalent broadband SNR is defined as follows: If we would ex-
tend the narrowband noise to a broadband noise using the same spectral
power in all subbands, we would obtain the “equivalent broadband SNR”
values of 0 dB and -20 dB. Thus, the equivalent broadband SNR is com-
puted before narrowband filtering of the noise.

2When both channels are similar, W01 and W10 are very small, and
the difference between the two dual channel algorithms is mainly due to
the attenuation during speech absence.
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sSNR
oad-

only
white

equivalent broadband
SNR1 of subband noise

nd noise 0 dB -20 dB
ise NR algorithm overall iwsSNR [dB]

no NR 21.0 16.6 13.8
single ch 21.8 18.2 15.31.0 dB
dual ch [8] 22.7 16.3 11.9
novel dual ch 22.9 20.0 16.7
no NR 9.3 7.2 5.5
single ch 10.7 8.9 7.2.3 dB
dual ch [8] 12.4 9.3 5.9
novel dual ch 12.3 10.9 8.9
no NR 2.5 1.3 0.1
single ch 3.9 2.9 1.7.5 dB
dual ch [8] 5.9 4.3 1.6
novel dual ch 5.6 4.8 3.2

Table 1: Evaluation results.

7. Conclusion
have presented a flexible noise reduction algorithm that com-
s two channels without any knowledge about the geometrical
p and can cope with input signals which differ significantly
eir SNR. If one channel is disturbed at time-frequency points
re the other is not, the better channel is chosen. If both chan-
contain speech with similar SNRs, the information of both

nnels is used for optimal noise reduction.
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