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Abstract 

Previously, we proposed two voice-to-phoneme conversion 

algorithms for speaker-independent voice-tag creation 

specifically targeted at applications on embedded platforms, an 

environment sensitive to CPU and memory resource 

consumption  [1]. These two algorithms (batch mode and 

sequential) were applied in a same-language context, i.e., both 

acoustic model training and voice-tag creation and application 

were performed on the same language.  

 

In this paper, we investigate the cross-language application of 

these two voice-to-phoneme conversion algorithms, where the 

acoustic models are trained on a particular source language 

while the voice-tags are created and applied on a different target 

language. Here, both algorithms create phonetic representations 

of a voice-tag of a target language based on the speaker-

independent acoustic models of a distinct source language. Our 

experiments show that recognition performances of these voice-

tags vary depending on the source-target language pair, with the 

variation reflecting the predicted phonological similarity 

between the source and target languages. Among the most 

similar languages, performance nears that of the native-trained 

models and surpasses the native reference baseline. 

Index Terms: voice-to-phoneme, voice-tag, speech recognition, 

embedded platform, cross-language,  multilingual,  

1. Introduction 

A voice-tag (or name-tag) application converts human speech 

samples into an abstract representation which is then employed 

to recognize (or classify) speech in subsequent uses. The voice-

tag application is the first widely deployed speech recognition 

application that uses technologies like DTW (Dynamic Time 

Warping) or HMMs in embedded platforms such as in mobile 

devices. Today, speaker-independent and phoneme HMM-based 

speech recognizers are also being included in mobile devices 

and voice-tag technologies are mature enough to leverage the 

existing computational resources and algorithms from the 

speaker-independent speech recognizer for further efficiency. 

For these reasons, the batch-mode and sequential voice-to-

phoneme conversion algorithms were proposed in  [1]. Both 

technologies create phonetic abstractions to represent a tag 

based on voice-to-phoneme conversions. The speaker-

independent speech recognizer performs voice-tag recognition 

in the same way as any task performed by a phoneme-based 

speech recognizer. The performances of these algorithms have 

been shown to match or surpass that of the voice-tag 
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scriptions made by expert phoneticians in a same-language 

ironment. 

e important advantage of previous voice-tag approaches, 

h as an HMM-based voice-tag technology, is their 

ependence of existing language resources. With the 

balization of mobile devices, this feature is imperative as it 

ws speaker-dependent speech recognition for resource-poor 

guages and dialects. Therefore, a legitimate concern 

fronting the proposed voice-tag approach is whether or not it 

 successfully leverage the speech resources from a resource-

ficient source language to recognize a target language for 

ich little or no speech data is assumed. Several studies have 

fact addressed the effectiveness of the cross-language 

lication of phoneme acoustic models in speaker-independent 

ech recognition (see  [2] [3]  [4] [5]). In this paper, we attempt 

emonstrate the cross-language effectiveness of the proposed 

ce-to-phoneme conversion algorithms in speaker-

ependent voice-tag applications for embedded platforms. In 

 next section, we briefly review the voice-to-phoneme 

version algorithms. In section 3, we describe the cross-

guage voice-tag experiments and provide the results in 

parison with that of voice-tag applications in a same-

guage context. Finally, we share some concluding remarks in 

tion 4. 

 Voice-to-phoneme conversion algorithms 

 [1], two voice-to-phoneme conversion algorithms are 

posed, namely the batch-mode and sequential voice-tag 

ations. They differ in how the voice-tag example utterances 

reafter example) are enrolled. Batch-mode conversion 

uires that all examples, usually two or three, are enrolled 

ultaneously and reaches its peak performance once 

ollment is completed. Because performance improves as the 

ber of enrollment examples increase, the enrollment process 

y lead to user frustration or even rejection. Sequential 

version, on the other hand, requires only one enrollment 

mple per voice-tag, though successfully-recognized 

sequent examples are used to update the voice-tag 

btrusively in the background. The obvious attraction of this 

orithm is that the inconvenience of the enrollment process is 

imized while performance is maximized, as there is no 

defined limit on the number of examples per voice-tag. The 

 appealing feature of this strategy is that voice-tag 

ognition may be initiated with a lower performance. 

orithmically, the two conversions differ in how to combine 

mples. The batch conversion combines examples at the 

ure level while the sequential conversion does so at the 
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hypothesis level. Before we describe the algorithms, let us 

consider some of their common assumptions. There are M 

examples, ]),1[( MmX
m

∈ , available to a voice-tag. 
m

X  is a 

sequence of feature vectors corresponding to an example. Given 

the scope of our current discussion, we will not distinguish 

between a sequence of feature vectors and an example in the 

remaining part of this paper. The objective here is to find N 

phonetic strings, ]),1[( NnP
n

∈ , following an optimization 

criterion. 

2.1. Batch-mode voice-tag creation 

The principle idea of batch-mode creation is to use a feature-

based combination collapsing M examples into a single 

“average” utterance. The expectation is that this “average” 

utterance will preserve what is common in all of the constituent 

examples while neutralizing their peculiarities. Dynamic Time 

Warping (DTW) is used as the combination algorithm. Given 

two examples, 
i

X and
j

X   ( ji ≠ and ],1[, Mji ∈ ), a trellis can 

be formed with 
i

X and
j

X  being horizontal and vertical axes, 

respectively. Using a Euclidean distance and DTW algorithm, 

the best path can be derived, where “best path” is defined as the 

lowest accumulative distance from the lower-left corner to the 

upper-right corner of the trellis. A new example 
ji

X
,

can be 

formed along the best path of the trellis, 
jiji

XXX ⊕=
,

, where 

⊕ is denoted as the DTW operator. The length of the new 

utterance is the length of the best path. 

 

Let )}1()..(),..0({
,,,,,
−=

jijijijiji
LxtxxX ,  

 )}1()..(),..0({ −=
iiiii

LxxxX ς  and 

 )}1()..(),..0({ −=
jjjjj

LxxxX τ , 

where τς ,,t are frame indices. We define 

2

)()(
)(

,

τς
ji

ji

xx
tx

+
= , where t is the position on the best path 

aligned to theς -th frame of
i

X  and theτ -th frame of
j

X   

according to the DTW algorithm. Applying repeatedly DTW 

operator M-1 times, we have the feature combination for M 

examples: )))(((
321,..,3,2,1 MM

XXXXX ⊕⋅⋅⋅⊕⊕⋅⋅⋅= . By 

using the “average” utterance and a simple phonetic decoder 

(see below), one can obtain N phonetic strings that serve as the 

abstract representation of the voice-tag. The phonetic decoder is 

usually a speech search engine constrained by a looped 

phoneme-grammar which is capable of delivering N best 

phonetic strings according to certain optimization criteria. (See 

 [6] and  [7] for a discussion of one such phonetic decoder.) 

Figure 1 depicts the batch-mode voice-creation system. 

 

 
Figure 1: Batch-mode voice-tag creation system 
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. Sequential voice-tag creation 

uential voice-tag creation is based on the hypothesis 

bination of the outputs of a phonetic decoder of M 

mples. It is attractive for several reasons. First, only one 

mple per voice-tag is required to create N initial seed 

netic strings,
n

P , using a phonetic decoder. The phonetic 

oder is the same as described in the previous subsection. If 

d phonetic coverage (that is, good phonetic robustness of the 

ned HMMs) is exhibited by the phonetic decoder, with initial 

d phonetic strings the recognition performance of voice-tags 

sually acceptable, though not maximized. Each time a voice-

 is successfully utilized (i.e. a positive confirmation of the 

ech recognition result is detected and the corresponding 

on is implemented - for example, the call is made), the 

rance is reused as another example to produce additional N 

netic strings to update the seed phonetic strings of the voice-

 through performing hypothesis combination. This update 

 be performed repeatedly until a maximum performance is 

ched. Figure 2 sketches this system. 

 
Figure 2: Sequential combination of hypothetical results of a 

phonetic decoder 

 objective of this method is to discover a sequential 

othesis combination algorithm that leads to maximum 

formance. As detailed in Error! Reference source not 

nd., we use a hypothesis combination based on a consensus 

rarchy displayed in the best phonetic strings of examples. 

 consensus hierarchy is expressed numerically in a phoneme 

ram histogram (typically a monogram or bigram is used). 

 sequential hypothesis combination algorithm is provided 

ow: 

 Enrollment (or initialization): Use one example per 

voice-tag to create N phonetic strings via a phonetic 

decoder as the current voice-tag; use the best phonetic 

string to create the phoneme n-gram histogram for the 

voice-tag. 

 Step 1: Given a new example of a voice-tag, create N 

new phonetic strings (via the phonetic decoder); update 

the phoneme n-gram histogram of the voice-tag with the 

best phonetic string of the new example.  

 Step 2: Estimate a phoneme n-gram histogram per each 

phonetic string for N current and N new phonetic strings 

of the voice-tag. 

 Step 3: Compare the phoneme n-gram histogram of the 

voice-tag with that of each phonetic string using a 

distance metric, such as divergence measure; select N 

phonetic strings, the histograms of which are closest to 

the histogram of the voice-tag histogram, as the updated 

voice-tag representation. 

Phonetic 
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Sequential 
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Combination 

 

Speech 

Recognizer 

1X

User 

Actions 

2≥iX



• Step 4: repeat steps 1-3 if a new example is available. 

3. Experiments 

3.1. Evaluation strategy and databases 

The phonetic decoder we use in our experiments is MLite++, a 

Motorola proprietary HMM-based ASR search engine for 

embedded platforms, and a phoneme loop grammar. We use the 

ETSI advanced front-end standard for distributed speech 

recognition to generate a feature vector of 39 dimensions per 

frame. Context-dependent (CD) sub-word and speaker-

independent HMMs are used for both the phonetic decoder and 

voice-tag speech recognition search engine. 

 

In practice, evaluating cross-language performance is complex 

and poses distinct challenges to same-language performance 

evaluation. In general, cross-language evaluation can be 

approached by two principle strategies. The first strategy 

creates voice-tags in several languages by using language 

resources, such as HMMs and a looped phoneme grammar, 

from a single source language. The weakness of this strategy is 

that it is difficult to normalize the linguistic and acoustic 

differences across languages, a necessary step in creating an 

evaluation database. The second strategy creates voice-tags in a 

single language by using language resources from several 

distinct source languages. The weakness of this strategy is that 

language resources differ significantly and it cannot be 

expected that each source language will be trained with the 

same amount and type of data. Because we can compare our 

training data in terms of quantity and type, we opted to pursue 

the second strategy for the cross-language experiments 

presented here. 

 

We select seven languages as source languages: British English 

(en-GB), German (de-DE), French (fr-FR), Latin American 

Spanish (es--LatAm), Brazilian Portuguese (pt-BR), Mandarin 

(zh-CN-Mand) and Japanese (ja-JP). For each of the source 

languages, we have sufficient data and linguistic coverage to 

train generic CD HMMs. The phoneme loop grammar of each 

source language is constructed from the phoneme set of that 

language.  

 

Because we previously tested in  [1] the performances of 

sequential and batch mode voice-to-phoneme conversion 

algorithms for speaker-independent voice-tag creation in an 

American English-only environment, and thus have these 

results for comparison, American English is chosen as the 

target language in the following cross-language experiments. 

The database selected for this evaluation is a Motorola-internal 

name database which contains a mixture of both landline and 

wireless calls. The database consists of spoken names of 

variable length and is divided into voice-tag creation and 

evaluation sets. The creation set has 85 name entries 

corresponding to 85 voice-tags, and each name entry comprises 

three examples spoken by a single speaker in different sessions. 

Thus the creation set is speaker-dependent. The purpose of 

designing a speaker-dependent creation set is that we expect 

that any given voice-tag will be created by a single user in real 

applications and not by multiple users. The evaluation set 
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tains 684 utterances of the 85 name entries. Most speakers 

a name entry in the evaluation set are different from the 

aker of the same name entry in the creation set, though some 

akers are the same for both sets. In general, then, our 

luation set is speaker-independent.  

. Experiment results 

1], we reported the sequential and batch-mode performance 

lts in an American English-only environment: 95.2% and 

23%, respectively. These performances are compared to the 

ual transcription baseline of 92.69%.  

the present investigation, the individual cross-language 

ce-tag recognition performances are compared to both the 

e-language results and to each other. To do the latter, a 

nological similarity study is conducted between the target 

guage (American English) and each of the selected 

luation languages, the prediction being that cross-language 

formance would correlate to the relative phonological 

ilarity of the source languages to the target language. We use 

ronunciation dictionary as each language’s phonological 

cription in order to ensure task independence, and because 

h language’s pronunciations are transcribed in a language-

ependent notation system (similar to the International 

netic Alphabet), cross-language comparison is possible  [8]. 

neme-bigram (biphoneme) probabilities collected from each 

tionary are used as the numeric expression of the 

nological characteristics of the corresponding language. The 

ance between the biphoneme probabilities of each source 

guage and that of the target language is then measured. This 

ric thus explicitly provides a biphoneme inventory and 

notactic sequence importance. It also implicitly incorporates 

neme inventory and phonological complexity information. 

ng this method, the distance score is an objective indication 

phonological similarity in the source-target language pair, 

ere the smaller the distance value between the languages, the 

re similar the pair (see  [2] for an in-depth discussion of this 

honeme distribution distance).  

 languages that we use in these evaluations are from four 

guage groups defined by genetic relation: (i) Germanic: en-

, en-GB, and de-DE; (ii) Romance: fr-FR, pt-BR, es--LatAm; 

 Sinitic: zh-CN-Mand and (iv) Japonic: ja-JP. In general, it 

xpected that closely related languages and contact languages 

guages spoken by people in close contact with speakers of 

 target language  [9]), will exhibit greatest phonological 

ilarity. The distance scores relative to American English are 

ollows, in order of increasing distance: en-GB, 0.61; de-DE, 

6; fr-FR, 1.81; pt-BR, 1.82; zh-CN-Mand, 1.85; ja-JP, 1.90 

 es--LatAm, 1.92. Note that the Germanic languages are 

sured to be the most similar to American English. In 

ticular, the British dialect of English is least distant to 

erican English, and German, the only other Germanic 

guage in the evaluation set, is next. German is followed by 

nch in phonological distance, and French and English are 

guages with centuries of close contact and linguistic 

hange.  

s preliminary study thus both substantiates in a quantitative 

 linguistic phonological similarity assumptions and provides 



a reference from which to evaluate our results. Based on this 

study, it is our expectation that cross-language voice-tag 

application performance will be degraded relative to the voice-

tag application performance in the same-language setting, and 

that the severity of the degradation will be a function of 

phonological similarity. 

 

Table  shows the cross-language voice-tag application 

performances of the sequential and batch mode voice-to-

phoneme conversion algorithms, where the acoustic models are 

trained on the seven evaluation languages while the voice-tags 

are created and applied on American English, a distinct target 

language. For reference, we also include the American English 

HMM performance as a baseline. 

Table 1: Word Accuracies of voice-tag recognition with 

batch and sequential voice-tag creations in cross-

language experiments. 

Word Acc. on Target 

Language 

Voice-Tag Creations Sources 

Sequential Batch 

Distance 

en-US (baseline) 95.2% 91.23% 0 

en-GB 91.37% 87.13% 0.61 

de-DE 90.50% 86.99% 1.46 

fr-FR 89.91% 85.09% 1.81 

pt-BR 82.75% 74.42% 1.82 

zh-CN-Mand 92.11% 84.94% 1.85 

ja-JP 78.07% 67.69% 1.90 

es--LatAm 89.62% 83.33% 1.92 

 

Apart from the exceptional performance of Mandarin using the 

sequential phoneme conversion algorithm, the performances 

generally adhere to the target-source language pair similarity 

scores identified above. Voice-tag recognition with British 

English-trained HMMs achieve a word accuracy of 91.37% 

while recognition with German-trained HMMs realize 90.5%. 

The higher-than-expected performance rate of Mandarin may be 

because the resources used to train Mandarin models are 

embedded with a significant amount of English material 

(English loan words, for example), reflecting a modern reality of 

language use in China. 

  

The cross-language evaluations show significant performance 

differences between the two voice-creation algorithms across all 

of the evaluated languages. The differences are in accordance 

with our observation in the same-language evaluation. Although 

there are degradations, the performances of sequential voice-tag 

creation with HMMs trained on the languages most 

phonologically similar to American English are very close to the 

reference performance (92.69%) where the phonetic strings of 

voice-tags were transcribed manually by an expert. 

We
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4. Conclusions 

 demonstrated that the voice-to-phoneme conversion 

orithms proposed earlier for a same-language environment 

 also applicable in a cross-language setting, where HMMs 

ned on a source language are used in voice-tag creation and 

ognition of a distinct target language in an embedded 

tform. We used a distance metric to show that performance 

lts associated with HMMs trained on languages 

nologically similar to the target language tend to be better 

n results achieved with less similar languages, such that 

formance degradation is a function of source-target language 

ilarity. Our experiments suggest that a cross-language 

lication of a voice-to-phoneme conversion algorithm is a 

ble solution to voice-tag recognition for resource-poor 

guages and dialects. We believe this has important 

sequences given the globalization of mobile devices and the 

sequent demand to provide voice technology in new markets. 

5. References 

Y.M. Cheng, C.X. Ma and L. Melnar, “Voice-to-phoneme 

Conversion Algorithms for Speaker-independent Voice-tag 

Applications in embedded Platforms,” Proc. IEEE 

Automatic Speech Recognition and Understanding 

Workshop, Cancun Mexico, 2005. 

C. Liu. and L. Melnar “An Automated Linguistic 

Knowledge-Based Cross-Language Transfer Method for 

Building Acoustic Models for a Language without Native 

Training Data” in Proc. InterSpeech’05, Lisbon, Portugal, 

pp. 1365-1368, 2005.  

J.J. Sooful, and E.C. Botha, “Comparison of acoustic 

distance measures for automatic cross-language phoneme 

mapping,” ICSLP’02, pp. 521-524, 2002. 

Schultz, T. and Waibel, A., “Fast Bootstrapping of LVCSR 

Systems with Multilingual Phoneme Sets,” Eurospeech 

’97, 1:371-373, 1997. 

Schultz, T. and Waibel, A., “Polyphone Decision Tree 

Specialization for Language Adaptation”, ICASSP. 

Istanbul, 2000. 

T. Holter and T. Svendsen, “Maximum likelihood 

modeling of pronunciation variation,” Speech 

Communication, 29: 177-191, 1999. 

 F.K. Soong and E.F. Huang “A tree-trellis based fast 

search for finding the N best sentences hypotheses in 

continuous speech recognition,” in Proc. International 

Conf. on Acoustics, Speech and Signal Processing, pp. 

705-708, 1991. 

Melnar, L. and Talley, J., “Phone Merger Specification for 

Multilingual ASR: The Motorola Polyphone Network,” 

ICPhS 03, pp. 1337-1340. 

Trask, R., A Dictionary of Phonetics and Phonology, 

London: Routledge, 1996, p. 90. 


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Yan Ming Cheng
	------------------------------

