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ABSTRACT

In this paper, we propose to use a new optimization method, i.e.,
semidefinite programming (SDP), to solve large margin estima-
tion (LME) problem of continuous density hidden Markov mod-
els (CDHMM) for speech recognition. First of all, we introduce a
new constraint into the LME to guarantee the boundedness of the
margin of CDHMM. Secondly, we show that the LME problem
under this new constraint can be formulated as an SDP problem
under some relaxation conditions and it can be solved very effi-
ciently by using some fast optimization algorithms specially de-
signed for SDP. The new method is evaluated in a continuous digit
string recognition task by using the TIDIGITS database. Experi-
mental results clearly demonstrate that the new SDP-based method
outperforms the previously proposed optimization methods using
gradient descent search in both recognition accuracy and conver-
gence speed. With the SDP-based optimization method, the best
LME models achieves 0.53% in string error rate and 0.18% in
WER on the TIDIGITS task. To our best knowledge, this is the
best result ever reported in this task.
Index Terms: large margin estimation, CDHMM, semidefinite
programming, speech recognition, discriminative training.

1. INTRODUCTION

Recently, we have proposed the large margin estimation (LME)
of HMMs for speech recognition [1, 2, 3, 4], where continuous
density hidden Markov models (CDHMM) are estimated based on
the large margin principle. As shown in [1, 3], the estimation of
large margin CDHMMs turns out to be a minimax optimization
problem. However, maximization of margin for CDHMMs may
become unbounded unless we impose additional constraints onto
the optimization procedure. In [1], a heuristic method, called iter-
ative localized optimization, is used to guarantee the existence of
an optimal point. In [2], we replace the original definition of mar-
gin with relative separation margin which is bounded by definition.
In [3], some theoretically-sound constraints are introduced into the
minimax optimization to guarantee the boundedness of the margin
in LME; Then a gradient descent method called constrained joint
optimization method is proposed to solve the constrained minimax
optimization approximately. Although the constrained minimax
problem in constrained joint optimization method can be converted
into an unconstrained minimization problem as in [3, 4] by casting
the constraints as the penalty terms in the objective function, it’s
still a non-convex nonlinear optimization problem. There is no ef-
ficient algorithm available to solve this optimization problem. The
gradient descent method used in [3, 4] can only lead to a locally
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mal solution which highly depends on the initial models used
he optimization. Moreover, the gradient descent search is hard
ntrol in practice since there are a number of sensitive param-
we need to manually tune for various experimental settings,
as the penalty coefficients and step size and so on.

In this paper, we propose to use a better optimization method
ME of CDHMM in speech recognition. First of all, we intro-
a new constraint to bound the margin of CDHMM in LME.

er this new constraint, the LME problem can be easily con-
ed into a semi-definite programming (SDP) problem under some
ation conditions if we adopt the Viterbi approximation in HMM

ulation. In this way, we are able to take advantage of the ef-
nt algorithms [5] for SDP to solve the LME of CDHMM for
ch recognition. SDP is currently considered as an active area

ptimization due to the discovery of new applications in several
s as well as the development of some new efficient algorithms
SDP is an extension of linear programming (LP). It has been
n that most interior-point methods for LP can be generalized

DP problems. As in LP, these algorithms possess polynomial
st-case complexity under certain computation models. They
lly perform very well in practice in terms of efficiency. More

ortantly, these algorithms can lead to the globally optimal so-
n since the SDP is a well-defined convex optimization prob-
The large margin HMM-based classifiers estimated with the
SDP-based optimization method are evaluated in a continu-

digit string recognition task by using the TIDIGITS database.
erimental results show that the newly proposed SDP method
ry effective in terms of recognition accuracy and optimization
iency. The SDP-based optimization yields significantly better
ormance than the previously proposed gradient descent based
ods in [1, 3, 4]. With the SDP-based optimization method,

LME models achieves 0.53% in string error rate and 0.18%
ER on the TIDIGITS task. To our best knowledge, this is the
result ever reported in this task.

2. LARGE MARGIN HMM

[1, 2, 3, 4], we know that the separation margin for a speech
ance Xi in a multi-class classifier can be defined as:

d(Xi) = F(Xi|λWi) − max
j∈Ω j �=Wi

F(Xi|λj)

= min
j∈Ω j �=Wi

[F(Xi|λWi) −F(Xi|λj)] (1)

re Ω denotes the set of all possible words, λW denotes the
M representing the word W , Wi is the true word identity for
and F(X|λW ) is called discriminant function. Usually, the
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discriminant function is calculated in the logarithm scale:
F(X|λW ) = log [p(W ) · p(X|λW )]. In this work, we are only
interested in estimating HMMs λW and assume p(W ) is fixed.

Given a set of training data D = {X1, X2, · · · , XN}, we usu-
ally know the true word identities for all utterances in D, denoted
as L = {W1, W2, · · · , WN}. The support vector set S is defined
as:

S = {Xi | Xi ∈ D and 0 ≤ d(Xi) ≤ γ} (2)

where γ > 0 is a pre-set positive number. All utterances in S are
relatively close to the classification boundary even though all of
them locate in the right decision regions.

The large margin principle leads to estimating the HMM mod-
els Λ based on the criterion of maximizing the minimum margin
of all support tokens, which is named as large margin estimation
(LME) of HMM.

Λ̃ = arg max
Λ

min
Xi∈S

d(Xi)

= arg min
Λ

max
Xi∈S j∈Ω j �=Wi

[F(Xi|λj) −F(Xi|λWi)] (3)

Note that the support token set S is selected and used in LME
because most of the other training data with larger margin is usu-
ally inactive in optimization towards maximizing the minimum
margin.

3. A NEW CONSTRAINT FOR LME OF CDHMMS

As shown in [1, 2, 3], the margin as defined in eq.(1) is actually un-
bounded for CDHMMs. In other words, we can adjust CDHMM
parameters in a way to increase margin unlimitedly. In [3, 4], we
introduced some theoretically sound constraints to ensure the exis-
tence of the optimal point in the large margin estimation of eq.(3).
However, it seems very hard to formulate the constrained minimax
optimization in [3, 4] into an SDP problem. Therefore, in this sec-
tion, we introduce a new constraint under which the large margin
HMM problem can be easily converted into an SDP problem.

At first, we assume each speech unit is modeled by an N -state
CDHMM with parameter vector λ = (π, A, θ), where π is the
initial state distribution, A = {aij |1 ≤ i, j ≤ N} is transition
matrix, and θ is parameter vector composed of mixture parameters
θi = {ωik, μik, Σik}k=1,2,··· ,K for each state i, where K denotes
number of Gaussian mixtures in each state. The state observation
p.d.f. is assumed to be a mixture of multivariate Gaussian distri-
butions with diagonal covariance matrices:

p(x|θi) =

K∑
k=1

ωik · N (x | μik, Σik)

=

K∑
k=1

ωik

D∏
d=1

√
1

2πσ2
ikd

e
− (xd−μikd)2

2σ2
ikd (4)

where mixture weights ωik’s satisfy the constraint
∑K

k=1 ωik = 1
and Σik = diag(σ2

ik1, σ
2
ik2, · · · , σ2

ikD) denotes the diagonal co-
varance matrix of kth Gaussian in state i. For simplicity, we only
consider to estimate mean vectors with the LME method.

Given any speech utterance X = {x1,x2, · · · ,xR} and any
model λk, as shown in [3], under Viterbi approximation, the dis-
criminant function, F(X|λk), can be expressed as follows:

F(X|λk) ≈ c − 1

2

R∑
t=1

D∑
d=1

(xtd − μstltd)2

σ2
stltd

(5)
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re we denote the optimal Viterbi path as s = {s1, s2, · · · , sR}
l = {l1, l2, · · · , lR}, and {μstlt , σ

2
stlt} represent mean and

ance vectors of the Gaussian at the time instant t along the op-
l path, and c stands for a constant independent from Gaussian
n vectors.
Suppose there are totally L Gaussian mixtures in the CDHMM
For notational convenience, we denote them as N (uk, Σk)

re k ∈ (1, 2, . . . , L). Thus we can rewrite eq.(5) as

F(X|λk) ≈ c − 1

2

R∑
t=1

D∑
d=1

(xtd − μktd)2

σ2
ktd

(6)

re we denote the optimal Viterbi path as k = {k1, k2, · · · , kR},
{μkt , σ

2
kt
} represent mean and variance vectors of the Gaus-

at the time instant t along the optimal path.
As a result, the decision margin dij in eq.(1) can be repre-
ed as a standard diagonal quadratic form:

dij(Xi) = F(Xi|λWi) −F(Xi|λj)

≈ cij − 1

2

R∑
t=1

D∑
d=1

[ (xitd − μitd)2

σ2
itd

− (xitd − μjtd)2

σ2
jtd

]
(7)

re we denote the optimal Viterbi path against λWi as i =
i2, · · · , iR}, and the optimal Viterbi path against λj as j =
j2, · · · , jR}, and cij is a constant.
Obviously, if every term in the summation in eq. (7) is bounded,

argin dij(Xi) will be bounded. It is easy to see that all these
s will be bounded if every mean μk in the HMMs is con-
ned in a limited range. Therefore, we introduce the following
rical constraint for all Gaussian means:

R(Λ) =

L∑
k=1

D∑
d=1

(μkd − μ
(0)
kd )2

σ2
kd

≤ r2 (8)

re r is a pre-set constant, and μ
(0)
kd is also a constant which is

o be the value of μkd in the initial models.
Actually, boundedness of the margin d(Xi) is guaranteed by
ollowing theorem :

orem 3.1 Assume we have a set of CDHMMs, Λ = {λ1, λ2,
, λM} and a set of training data, denoted as D = {X1, X2, · · · ,
}. The margin d(Xi), as defined in eq.(1), is bounded for any
n Xi in the training set D as long as the constraint in eq.(8)
s.

The proof is quite straightforward and can be found in [7].
According to theorem 3.1, the minimum margin in eq.(3) is a
ded function of model parameter set, Λ, under the constraint
ified in eq. (8). Therefore, the minimax optimization problem

q.(3) becomes solvable under the additional constraint eq.(8).
e introduce a new variable −ρ (ρ > 0) as the common upper
d for all terms in the minimax optimization, we can convert

minimax optimization in eq.(3) into an equivalent minimiza-
problem as follows:

blem 1
Λ̃ = arg min

Λ
−ρ (9)

ect to
F(Xi|λj) −F(Xi|λWi) ≤ −ρ (10)



R(Λ) =

L∑
k=1

D∑
d=1

(μkd − μ
(0)
kd )2

σ2
kd

≤ r2 (11)

ρ ≥ 0. (12)

for all Xi ∈ S and j ∈ Ω and j �= Wi. Here r is a pre-set
constant. μ

(0)
kd is also a constant which is set to the original value

of μid in the initial models.

4. SEMIDEFINITE PROGRAMMING METHOD

In this work, we study how to solve the above LME of CDHMMs
with the SDP method. We know that the following form is a stan-
dard SDP problem.

Minimize
nb∑

j=1

Cj · Xj (13)

subject to

nb∑
j=1

Ai,j · Xj ≤ bi, i = 1, . . . , m, Xj � 0. (14)

where Xj � 0 means each variable Xj is a positive semidefi-
nite matrix. Ai,j , Cj are real symmetric matrices with the same
dimension as Xj , bi is a scalar constant, and X · Y denotes the
inner product of two symmetric matrices as: X ·Y = tr(XT Y ) =∑

i,j xijyij .
First of all, we introduce some notations: ei is an L-dimensional

vector with −1 at the i-th position, and zero everywhere else. A
column vector x is written as x = (x1; x2; . . . ; xn) and a row
vector as x = (x1, x2, . . . , xn). ID is a D × D identity matrix.
And U is a matrix by concatenating all normalized Gaussian mean
vectors as its columns as:

U = (μ̃1, μ̃2, . . . , μ̃L) (15)

where each column

μ̃k := (μk1/σk1; μk2/σk2; . . . ; μkD/σkD). (16)

In the following, we will consider how to convert the mini-
mization Problem 1 into an SDP as shown in eq.(13).

Firstly, we will re-formulate the constraint in eq.(10) into the
standard constraint form eq.(14) in SDP . After some math manip-
ulations, we can re-write eq.(6) as:

F(X|λW ) = c − 1

2

T∑
t=1

(x̃t − μ̃kt)
T (x̃t − μ̃kt)

= c − 1

2

T∑
t=1

(x̃t; ekt)
T (ID, U)T (ID, U)(x̃t; ekt)

= −A · Z + c (17)

where x̃t denotes a column normalized feature vector, with x̃t :=
(xt1/σkt1; xt2/σkt2; . . . ; xtD/σktD) and

A =
1

2

T∑
t=1

(x̃t; ekt)(x̃t; ekt)
T (18)

Z =

(
ID U
UT Y

)
Y = UT U (19)
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Thus, it is straightforward to convert the constraint in eq. (10)
the following form:

j(Xi) = F(Xi|λj) −F(Xi|λWi) = Aij · Z − cij ≤ −ρ (20)

re Aij = Ai − Aj with Ai and Aj calculated according to
18) based on the Viterbi decoding paths i and j respectively.
Secondly, we will convert the constraint eq.(11) into the stan-
SDP form. Similar as above, R(Λ) in eq.(8) can be re-written
llows:

R(Λ) =

L∑
k=1

(μ̃k − μ̃
(0)
k )T (μ̃k − μ̃

(0)
k )

= Q · Z ≤ r2 (21)

re Q =
∑n

k=1(μ̃
(0)
k ; ek)(μ̃

(0)
k ; ek)T , and μ̃

(0)
kd is defined in eq.

.
Combining eq.(9) with the constraints eq.(20) and eq.(21), we
he following minimization problem:

blem 2
Λ̃ = arg min

Λ
−ρ (22)

ect to
Aij · Z + ρ ≤ cij ρ ≥ 0 (23)

Q · Z ≤ r2 (24)

Z =

(
ID U
UT Y

)
Y = UT U . (25)

ll Xi ∈ S and j ∈ Ω j �= Wi.

The minimization Problem 2 is equivalent to the original min-
problem. However, since the constraint Y = UT U is not

ex, it is a non-convex nonlinear optimization problem. As
n in [6], the following statement always holds for matrices:

− UT U � 0 ⇔ Z =

(
ID U
UT Y

)
� 0 (26)

refore, following [6], if we relax the constraint Y = UT U to
UT U � 0, we are able to make Z a positive semidefinite

ix and in turn convert Problem 2 into an SDP problem as:

blem 3
Λ̃ = arg min

Λ
−ρ (27)

ect to:
Aij · Z + ρ ≤ cij (28)

Q · Z ≤ r2 (29)

Z =

(
ID U
UT Y

)
� 0 ρ ≥ 0 (30)

ll Xi ∈ S and j ∈ Ω j �= Wi.

Problem 3 is a standard SDP problem, which can be solved
iently by many SDP algorithms. In problem 3, the optimiza-
is carried out w.r.t. Z (which is constructed from all HMM
ssian means) and ρ while Aij and cij and Q are constants
ulated from training data, and r is a pre-set parameter. How-
, due to the relaxation in eq.(30), this SDP problem is just
pproximation to the original LME problem. Let us define



H = Y − UT U � 0. After some math manupulations, we can
derive that the margin which is maximized in this SDP problem as:

−d∗
ij(Xi) = Ai,j ·

(
ID U
UT UT U

)
− cij + Ai,j ·

(
0 0
0 H

)

=
1

2

T∑
t=1

(x̄t − μ̄it)
T (x̄t − μ̄it) −

1

2

T∑
t=1

(x̄t − μ̄jt)
T (x̄t − μ̄jt) − cij (31)

where x̄t := (x̃t; 0), μ̄it := (μ̃it ;
√

hitit), and hitit and hjtjt

are diagonal elements of H at positions (it, it) and (jt, jt).
Comparing eq. (31) with eqs.(20) and (17), we can see that

this SDP problem actually augments each D-dimension speech
feature vector xt to a (D + 1)-dimensional vector and tries to
maximize another margin, −d∗

ij(Xi) in eq.(31), in this augmented
(D + 1)-dimension space. At the end, we directly project the op-
timal solution back to the original D-dimensional space. The SDP
algorithms guarantee to find the globally optimal solution in the
augmented higher-dimension space, but not the projected one in
the original space.

5. EXPERIMENTAL RESULTS

The proposed SDP-based optimization method for LME is evalu-
ated on the TIDIGITS database for continuous speech recognition
in the string level[4]. Only adult portion of the corpus is used in
our experiments. It contains a total of 225 speakers (111 men and
114 women), 112 of which (55 men and 57 women) are used for
training and 113 (56 men, 57 women) for test. The training set
has 8623 digit strings and the test set has 8700 strings. Our model
set consists of 11 whole-word CDHMMs representing all digits.
Each HMM has 12 states and use a simple left-to-right topology
without state-skip. Acoustic feature vectors consist of standard
39 dimensions (12 MFCC’s and the normalized energy, plus their
first and second order time derivatives). Different number of Gaus-
sian mixture components are experimented. We first train models
based on maximum likelihood (ML) criterion. Then, MCE train-
ing uses the best ML model as the seed model. All HMM model
parameters (except transition probabilities) are updated during the
MCE training process. At last, we re-estimate the models with
the LME method by using both gradient descent and the proposed
SDP-based optimization. In LME, we use the best MCE models as
the initial models and only HMM mean vectors are re-estimated.
In each iteration of LME, a number of competing string-level mod-
els are computed for each utterance in training set based on its N-
best decoding results (N = 5). Then we select support tokens
according to eq.(2) and obtain the optimal Viterbi sequence for
each support token according to the recognition result. Then, the
relaxed SDP optimization , i.e. Problem 3, is conducted with re-
spect to Z and ρ. At last, CDHMM means are updated based on the
optimization solution through a simple projection. If not conver-
gent, next iteration starts again from recognizing all training data
to generate N-Best competing strings. In this work, Problem 3 is
solved by an open software, DSDP v5.6 [5] running under Matlab.

In Table 1, we give performance comparison in the TIDIGITS
test set when using different training criteria to estimate CDHMMs,
where LME-Grad represents the LME with the gradient descent
method in [3, 4] and LME-SDP represents the LME method with

SDP
LME
(ML
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proposed in this paper. It is clearly demonstrated that both
methods significantly outperform both maximum likelihood

) and minimum classification error (MCE) methods. If we
pare the SDP method with our previous results based on the
ient descent approach in [4], we can see that the SDP method
s a dramatic improvement in both recognition accuracy and
ergence speed. Significant gain has been observed for all
el sizes we have examined. This is partly because the SDP
od can find the globally optimal solution (not just local opti-
) in the augmented higher-dimension space. And the results
show that the approximation caused by relaxation and pro-

on seems reasonably good in the experiments. The best LME
el (32-mix) by using SDP method achieves 0.53% in the string
r rate and 0.18% in WER. To our best knowledge, this is the
st error rate ever reported in this task.

le 1. String error rates (in %) on the TIDIGITS test data. (ML:
imum likelihood; MCE: minimum classification error; LME-
: LME with gradient descent in [3, 4]; LME-SDP: the pro-
d SDP-based LME.)

ML MCE LME-Grad LME-SDP
1-mix 12.61 6.72 3.77 2.75
2-mix 5.26 3.94 1.70 1.24
4-mix 3.48 2.23 1.24 0.89
8-mix 1.94 1.41 0.87 0.68
16-mix 1.72 1.11 0.82 0.63
32-mix 1.34 0.90 0.66 0.53

6. SUMMARY

is paper, we proposed a semidefinite programing (SDP) method
arge margin estimation (LME) of CDHMMs in speech recog-
n. The new optimization method has been demonstrated to be
effective in the TIDIGITS continuous digit string recognition

. Currently, the SDP method is being extended to other large
bulary continuous speech recognition ASR tasks.
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