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Abstract

This paper presents an approach to articulatory inversion using au-
dio and video of the user’s face, requiring no special markers. The
video is stabilized with respect to the face, and the mouth region
cropped out. The mouth image is projected into a learned indepen-
dent component subspace to obtain a low-dimensional representa-
tion of the mouth appearance. The inversion problem is treated
as one of regression; a non-linear regressor using relevance vector
machines is trained with a dataset of simultaneous images of a sub-
ject’s face, acoustic features and positions of magnetic coils glued
to the subjects’s tongue. The results show the benefit of using both
cues for inversion. We envisage the inversion method to be part of
a pronunciation training system with articulatory feedback.
Index Terms: audio-visual to articulatory inversion.

1. Introduction
We are in the process of creating an automatic language training
system, which gives the user articulatory feedback on the pronun-
ciation [1]. One of the core challenges is the resynthesis of the
user’s articulatory movements from audio and video, i.e. the prob-
lem of audiovisual-to-articulatory inversion.

There are two approaches to inversion, a generative analysis-
by-synthesis approach [2, 3, 4], and a discriminative approach [5,
6, 7, 8]. Like all generative approaches, inversion-by-synthesis is
computationally demanding, and requires a generative model of
the tongue and vocal tract. The downside of the discriminative
approach is that it requires large volumes of labeled training data.
In this paper, we follow the discriminative approach.

Previous attempts [3, 5, 6, 7, 8] at discriminative visual-to-
articulatory or audio-visual-to-articulatory inversion have shown
that important information on the tongue position may be gained
from the speaker’s face. All these studies however used 3D motion
capture of the face, while in this paper, we investigate the possibil-
ities of reconstructing the tongue shape from markerless video of
the face. For the computer assisted pronunciation training system
we envisage [1], this is necessary since the need for markers or
blue lipstick would compromize the usability of the system.

Most existing methods for extracting information from face
video rely on extracting the lip contours, either for lip tracking
or for parameter extraction. The lip countours are modeled us-
ing snake-like methods [9, 10] or data driven principal component
analysis (PCA) methods [11, 12, 13]. In contrast, we do not at-
tempt to explicitly model the lip shape, for two reasons. Firstly,
tracking the lips is difficult and computationally demanding to do
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stly [9]. Secondly, important information, such as shading in-
ting lip protusion, and visibility of the teeth and tongue, is not
ent in the lip shape.
Instead of tracking the lips, we track the face as a whole [14],
h is less deformable and easier to track. We then stabilize the
in each image and extract the mouth region. The articulatory
rmation in this region is represented in terms of the indepen-
components of the lip image.

The approach is similar to methods used in [11, 13], with the
ption that these studies stabilized the images by tracking the
themselves. In [15] features in the face were tracked, but lip
ours were then extracted and used as a basis for recognition.
ko et al. [16] do not detect lip contours, but instead extract
ry articulatory mouth features. Although robust for separation
een a small set of words, the approach renders a quite coarse

esentation that might be unsuitable for inversion.
We explore the possibilities of reconstructing the tongue shape
the independent components of the lip image, from the acous-

ignal, and from combinations thereof.

2. Data Acquisition
midsagittal position of six electromagnetic articulography
A) coils on the tongue, jaw, upper incisor and upper lip were
rded simultaneously with the audio signal and video of the
ect’s face [17]. The data from the three coils on the tongue,
–Tg3 (approximately 8, 20, 52 mm from the tip, respectively),
on the jaw were used in this study.
The subject was a female speaker of Swedish, judged as highly
ligible by hearing-impaired listeners. The corpus used in this
y consisted of 63 symmetric VCV words with V= and

. Each word
ared only once in the training set.

3. Data Processing
Speech Acoustics

audio signal was originally sampled at 16 kHz. For correla-
with the articulatory data, the audio signal was divided into
es of length 24 ms with a shift of 16.67 ms. Each acoustic
e was pre-emhasized and multiplied by a Hamming window.
variance-based LPC algorithm [18] was then applied to gen-
16 line spectrum pairs (LSP), which are closely related to the
ant frequencies and the vocal tract shape [5, 6, 8].

To enable correlation with the PAL video stream, the speech
al was finally resampled with linear interpolation to 25 Hz,
ng a sequence of 2101 17-dimensional vectors ak, consisting
e 16 LSP coefficient and the RMS amplitude in each frame.
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3.2. Video Data

The video had a frame-rate of 25 Hz, each frame 768×576 pixels.
The subject was wearing white markers for a 3D motion capture
system, but they were not employed in the lip parameter extraction.

The subject’s mouth was stabilized in the image by tracking of
the speaker’s face [14]. After down-sampling, a 25 Hz, 33 × 23
pixel video of the mouth was obtained.

A low-dimensional representation of the mouth was learned
according to the following. Consider a set of N mouth images mk.
Subtract a template image m0 with neutral lip pose (Figure 1a)
from mk, the R, G and B bands subtracted separately. The differ-
ence image can be represented as a column vector xk = mk−m0

of size d, with X = [x1, . . . ,xN ]. A projection of these vectors
onto a base C = [c1, . . . , cn], where n ≤ N, n ≤ d can be
expressed as X ≈ CV where V is a parameter matrix in the sub-
space defined by C. The base C should be selected to represent
the data set X as well as possible.

This can be done in a number of ways, of which two are princi-
pal component analysis (PCA) [11, 12, 13] and independent com-
ponent analysis (ICA) [19]. Using PCA, C is selected so that the
columns represent the n largest principal components (eigenvec-
tors) of the data set. In ICA, C is instead selected as the n most
informative statistically independent components of the dataset – a
more compact representation of the dataset than PCA. In our study
we hence employed ICA (Figure 1).

All difference frames xk in the training set were now projected
onto the learned subspace C. With n = 50 and d = 33×23×3, we
obtained a sequence of 2101 vectors vk which were approximate
representations of the mouth images mk (Figure 2). The effect
of different compression rates n

d
on the representation of visual

articulatory features is discussed in a separate coming study.

3.2.1. The White Motion Capture Markers

The subject was wearing reflective markers for the 3D motion cap-
ture system [17]. These markers were not used in this study, nei-
ther in the stabilization nor in the ICA learning. However, the
markers clearly affected the component base (Figures 1b-z).

(a) Orig. (b) ICA (c) Orig. (d) ICA

Figure 2: ICA representation. (a) Original frame mk, sound .
(b) Reconstruction of the same frame m0 + Σn

i=1vk,ici, using
n = 50. (c) Original frame mk, sound . (d) Reconstruction of
the same frame m0 + Σn

i=1vk,ici, using n = 50.
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The question is if the markers improved or worsened the re-
. The reconstruction in Figure 2b indicates that the markers
ot help in reconstruction; only four of the markers in Figure
re reconstructed properly in Figure 2b. Moreover, since our
hod does not rely on tracking of individual features around the
th, but rather on a holistic representation of the mouth pattern,
hould even be possible that the markers cause the ICA method
il to represent information about shadowing and teeth visibil-

leading to a mouth representation with less expressive power.
We hence consider that the results presented below represent a
estimation of what may be achieved with audiovisual inversion
n unmarked face, rather than a special case of marker tracking.

EMA Data

revious studies using this data set [7, 8, 17], EMA data at a
pling rate of 60 Hz has been used, while we in the present
y use EMA data resampled with linear interpolation to 25 Hz,
rrespond to the frequency of the PAL video stream. This gives

quence of 2101 8-dimensional vectors tk (horizontal and ver-
position of the four EMA coils in the midsagittal plane).

4. Inversion
inversion, we want to learn functions fA, fV , fAV , mapping
ectively acoustic, video data and acoustic and video data to

ated EMA coil positions as t̂
A
k = fA(ak), t̂

V
k = fV (vk),

= fAV (ak,vk). The set of training triples (ak,vk, tk) can
sed to learn these functions.
Previous similar inversion approaches [5, 6, 7, 8] have used
ar or multi-linear regression to learn these functions. How-
, the relationship between the ICA parameters and the EMA
positions can be expected to be higly non-linear. Thus, we
loy a relevance vector machine (RVM) [20], which is a non-
ar kernel-based regression technique.

Fusion of Audio and Video

re are two approaches to fusing the two modalities in the func-
fAV , early and late fusion.
An early fusion approach is to simply concatenate the training

ors as t̂
AVearly
k = fAV ([αA

a
T
k v

T
k ]T ) where αA = σ̄V

σ̄A is
rmalizing scale factor, σ̄A and σ̄V being the mean standard
ations in the audio and video datasets.
Late fusion instead performs regression separately for the two
alities, combining the results as t̂

AVlate
k = ΓAfA(ak) +

V (vk) where ΓA and ΓV are a diagonal matrices whose re-

tive elements are (ρA
i

)2

(ρA
i

)2+(ρV
i

)2
and (ρV

i
)2

(ρA
i

)2+(ρV
i

)2
, ρ

A and ρ
V

g the correlations between tk and t̂
A
k and t̂

V
k respectively.

Both these approaches were evaluated in our study.
(a) m0 (b) c1 (c) c2 (d) c3 (e) c4 (f) c5 (g) c6 (h) c7 (i) c8 (j) c9 (k) c10 (l) c11 (m) c12

(n) c13 (o) c14 (p) c15 (q) c16 (r) c17 (s) c18 (t) c19 (u) c20 (v) c21 (w) c22 (x) c23 (y) c24 (z) c25

Figure 1: ICA base for lip images. (a) Template m0. (b-z) The first 25 independent components ci learned from a set of N = 472
difference images xk = mk − m0.
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Figure 3: Correlation coefficients ρ
A, ρ

V , ρ
AVearly , ρ

AVlate for
jaw and tongue tip (Tg1), middle (Tg2) and back (Tg3) coil posi-
tion (X vertical, Y horizontal). Correlations are also shown for 3D
motion capture data of the face [7] ”Mocap only (2003)”.

5. Results
The training data was employed in a jackknife fashion: The train-
ing set was divided into 10 equally large parts. One part in turn
was removed from the training data and used as test set, while the
functions fA, fV , fAV were learned from the 9 others. This gave
estimates t̂

A
k , t̂V

k , t̂AVearly
k , t̂AVlate

k for all training frames, with no
overlap between training and test sets.

5.1. Correlation

For each frame k, the correlations ρ
A, ρ

V , ρ
AVearly , ρ

AVlate be-
tween true EMA coil position tk and the reconstructed positions
t̂

A
k , t̂

V
k , t̂

AVearly
k , t̂

AVlate
k were computed. Figure 3 shows the

correlation coefficients for each coil parameter individually. The
low correlation for parameter Tg2 Y is due to rapid tongue groove
changes and spurious measurement errors for this coil.

Except for the horizontal position of the backmost tongue coil,
the video makes a larger contribution than the acoustic signal, not
only for the front coils, but even for positions further back, which
are often considered impossible to lipread.

Compared to the results using 3D motion capture of the face,
it is natural that the reconstruction of the jaw from the video im-
ages is not as perfect as from the 3D data, since both the horizon-
tal and vertical jaw movement is given almost directly by the 3D
data, while they must be estimated from the video. The horizon-
tal movement is a hidden parameter, indicated only by changes in
shading, while the vertical movement needs to be estimated from
the shape and size of the mouth opening rather than from an abso-
lute position.

It is noteworthy that the vertical tongue tip position is esti-
mated better from video images than from 3D motion capture data,
which may be explained by the fact that the tongue tip will actu-
ally be visible in some of the video images. For the remaining
tongue coil coordinates, the estimation from video images is only
marginally worse than that of the 3D motion capture, except for
the back tongue coil. The better estimation of Tg3 from 3D mo-
tion capture data is probably due either to information given by
markers on other parts of the face or the correlation between jaw
and tongue movements: since the jaw position is almost perfectly
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re 4: Mean correlation coefficients ρ̄A, ρ̄V , ρ̄AVearly , ρ̄AVlate

he three EMA tongue coils. Mean correlations are also shown
udio [8] ”A (2005)”, 3D motion capture data of the face [7]

(2003)”, and a combination thereof [8] ”AM (2005)”.

ated from the 3D motion capture, this data will have the up-
hand for all frames for which there is no independent tongue
ement with respect to the jaw.
Figure 4 shows that audio-visual speech inversion outperforms
acoustic- and visual-to-articulatory inversion, which is natu-

since the two modalities are complementary. Figure 4 further
cates, in accordance with previous studies using 3D motion
ure of the face [7, 8], that visual data contributes more than the
stic data. The video images of the speaker’s lips can naturally

provide as much information for the inversion as 3D motion
ure data of the entire face, but the improvement compared to
udio only case is nevertheless important.
While the early fusion of audio and visual data is only
ginally better than visual alone data, late fusion results in a
tantially higher correlation. Interestingly, this concords with
ential theories on human speech perception (e.g. [21, 22])
ng that humans process information within a modality inde-
ently and then fuse the processed, rather than the raw, data.

Articulatory reconstruction

nalyze the quality of the reconstructed coil positions in an ar-
atory context, the EMA coil positions were used to reconstruct
ongue shape in an articulatory model [23]. The conversion of

coil positions into the parameters controlling the model is
ribed in [7]. It is based on a simultaneous optimization of
rticulatory parameters in order to minimize the Euclidean dis-
e between the three EMA coils and the tongue contour with the
traints that the tongue tip of the contour should correspond to
infered from the first tongue coil.
Figure 5 shows five different cases of reconstruction, with Fig-
a being the ”mean” case, i.e. that the audio-visual input is bet-

han either modality alone. The most common is however that
of the modalities, either the visual (Figure 5b) or the acoustic
ure 5c) is better than the other, thus contributing to a higher
ee to the audio-visual reconstruction than the other. It would
efore be interesting to investigate online computation of the
mal fusion weights ΓA and ΓV for each new frame.
Comparing early and late fusion, Figures 5d-e give an illustra-
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tion of the fact that the early fusion is often better when either both
modalities fail or one of the modalities fail completely, whereas
Figures 5a-c show that late fusion is better when at least one of
the modalities is successful. Moreover, the early fusion fails less
gracefully than the late fusion (Figure 5b), which also explains the
over-all better correlation results for the late fusion.

6. Conclusions
We have in this study shown that automatic extraction of lip com-
ponents from a video image can contribute substantially to a dis-
criminative articulatory inversion. Indeed, the contribution given
by the visual modality is higher than that from the acoustic, and
even if the results obtained from video images of the face cannot
quite match those of 3D motion capture, these results are more
promising for pronunciation training applications, since the audio-
visual inversion can be done without special measurement equip-
ment on the user. Our results suggest that the best results may be
achieved by processing the audio and video streams separately and
subsequently fuse the inversion estimations.
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audio-visual early fusion (dash-dotted) and audio-visual late fusion (solid).
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