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Abstract
In this paper we consider the problem of detecting speaker changes
in audio signals recorded by distant microphones. It is shown that
the possibility to exploit the spatial separation of speakers more
than makes up the degradation in detection accuracy due to the
increased source-to-sensor distance compared to close-talking mi-
crophones. Speaker direction information is derived from the fil-
ter coefficients of an adaptive Filter-and-Sum Beamformer and is
combined with BIC analysis. The experimental results reveal sig-
nificant improvements compared to BIC-only change detection, be
it with the distant or close-talking microphone.

Index Terms: speaker diarization, position estimation, beamform-
ing, BIC.

1. Introduction
In speaker diarization or acoustic scene analysis information about
”who spoke when” is to be gleaned from recorded speech signals.
While classical applications of this technology are in the field of
automatic annotation of prerecorded audio or multimedia data [1],
new emerging applications are found in the realm of telephone or
video conferencing or for intelligent user services. In the latter
case, information about the speaker is gathered in order to auto-
matically establish user profiles and preferences and adapt an in-
terface to an individual user [2], [3]. While the same technologies,
such as speaker change detection and speaker recognition are used,
there are however, remarkable differences compared to the afore-
mentioned classical applications:

• The data are not prerecorded, but have to be processed on-
line. Decisions on speaker change and identity should be
taken with minimum latency.

• In order to enhance the usability of human-to-machine or
human-to-human communication, distant microphones are
preferred over close talking microphones.

Most of the literature on speaker change detection does not ad-
dress these two issues. In a typical setup speaker change detec-
tion based on the Bayesian Information Criterion (BIC) delivers
hypothetical change points which are then reconsidered using a
clustering approach [4]. Such a two-stage batch procedure, which
assumes that the whole database is available before processing
starts, is not applicable in an online streaming scenario, where la-
tency (and also computational effort, to some extent) is crucial.
To reduce delay other methods have to be found to asses the hy-
pothetical change points proposed by BIC. In our case we utilized
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ction-of-Arrival (DoA) information obtained from an adaptive
ophone array beamformer. Using this information to filter the
thetical change points large performance improvements could

btained.
In the next section we briefly revisit speaker change detection
IC. Section 3 gives a short review of how speaker direction in-
ation is derived from the otherwise blind adaptive microphone

y beamformer proposed in [5]. After describing the experi-
tal setup and the database in Section 4, Section 5 contains the
rimental results and discusses the combined BIC-beamformer

gn.

2. Bayesian information criterion
basic idea for identifying possible change points is to refor-

ate the task as a problem of model selection [1], [6]. Given the
f feature vectors X(n) = {x(n), . . . , x(n+M −1)}, where
enotes the window size, two models for X(n) are proposed.
null hypothesis H0 states that all feature vectors are indepen-
and identically distributed (i.i.d.) samples drawn from the

e Gaussian N (X ;μ0,Σ0), while in the alternative hypothe-

1 the first b vectors x(n), . . . , x(n + b − 1) are assumed to
rawn from N (X ;μ1,Σ1) and the remaining from the Gaus-
N (X ;μ2,Σ2). Here we used a sliding window approach,

re b = M

2
is fixed and the window always contains the M

t recent feature vectors [7].
Since the parameters of the Gaussians are not known they have
e estimated from the data themselves. This gives the following
likelihood of the data X(n) under the hypotheses H0 and H1

ectively [1]:

g p(X(n)|H0) = −
M

2
log |cΣ0| −

MD

2
(log(2π) + 1) (1)

p(X(n)|H1) = −
M

4
log(|bΣ1||bΣ2|) −

MD

2
(log(2π) + 1)

(2)
re bΣ0, bΣ1, bΣ2 are estimates of the respective covariance ma-
s. Since we are interested in low latency and thus small win-
sizes, all covariance matrices are assumed to be diagonal.

Several decision rules have been proposed for BIC. In our
riments we found that the metric decision criterion for de-
ng change points [8] was quite robust. A possible speaker
ge point is detected, if the differences between the BIC value
local maximum (BIC(max)) and the corresponding minima
(minL), BIC(minR)) are both larger than a threshold δ, see

1. In this criterion the terms which are independent of the input
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Figure 1: Metric decision rule

data, e.g. the model complexity, are unimportant and it is sufficient
to consider

BIC(X(n)) = −
M

2
log |bΣ0| +

M

4
log(|bΣ1||bΣ2|). (3)

3. DoA estimation by FSB beamforming
In [5] we presented a Filter-and-Sum Beamformer (FSB) whose
coefficients are adapted such that they form the principal compo-
nent of the power spectral density matrix of the microphone sig-
nals. While the adaption works blindly, i.e. does not require the
estimation of the Direction-of-Arrival (DoA) of the desired signal,
DoA information can be derived from the filter coefficients them-
selves [9].

The FSB output signal y(n) is given by

y(n) =
MX

m=1

xm(n) ∗ fm(−n) (4)

where xm(n) is the m-th microphone signal and fm(n) is the m-th
filter impulse response. For the Direction-of-Arrival information
the signal delay between two microphone channels must be esti-
mated. This can be done by calculating the cross-correlation

φij(λ) = fi(−λ) ∗ fj(λ) (5)

between the i-th and the j-th filter impulse response. Here λ = kT

denotes the lag, which is an integer multiple of the sampling period
T . As the FSB filters can model fractional delays a resolution
below the sampling period can be obtained by interpolation. Let
this interpolated cross-correlation be called φ̃ij(τ ), with τ = lT ′

and T ′ < T . The delay between the signals at microphones i and
j is then estimated by

δij = argmax
τ

|φ̃ij(τ )| (6)

and the Direction-of-Arrival can be calculated by

αij = arcsin

„
c ·

δij

sij

«
(7)
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Figure 2: Database recording setup

re c is the speed of sound and sij is the distance between the
and the j-th microphone.

The accuracy is further enhanced by calculating the mean
ction-of-Arrival α by

α =
2

M2 − M

M−1X
i=1

MX
j=i+1

αij (8)

all possible microphone pairs (i, j) of the linear array. Out-
in the Direction-of-Arrival information are rejected through a

ian filter.

The experiments showed a mean adaptation time for the beam-
er of approximately 40 feature vectors (0.4 s) and the accu-
improved with the increasing number of microphones.

4. Experimental setup and database
t of the existing databases on speaker change detection con-
either single-channel recordings or recordings of multiple,
ibuted microphones. Recordings of microphone arrays with
n, fixed microphone array geometry are hardly available.
that the CHIL project is concerned with similar research is-

as studied here and that a large database will become available
e course of the project [10].

We carried out recordings in a setup as depicted in Fig.2 to
pile our own database. Two speakers sitting in a medium-sized

are alternatingly reading aloud passages of newspaper arti-
. A passage has a minimum duration of 2.5 s. Audio signals
captured by two near-field microphones (”Micro 1”, ”Micro
dynamic microphone with 0.2 m distance towards speaker),
being close to the first, the other close to the second speaker.
her, a linear 6-element microphone array (”Microphone ar-
; prepolarised condenser microphones) with an interelement
nce of 0.05 m is placed at a distance of approximately 2.8 m
the speakers. The array is mounted at a height of 1.2 m to

epresentative of being mounted on top of a display. The whole
p should feature a typical scenario where people communicate
r with a system or a remote partner via distant microphones
displays.

Since handlabeling the data is an expensive and error-prone
we tried to choose a setup which allows for close-to-perfect
matic labeling of speaker changes. To this end we placed a
ovable wall between the speakers resulting in an attenuation of

dB of the speech of the second speaker compared to the sig-
of the speaker sitting next to the near-field microphone. An
tive interference canceler was used to further attenuate the



other speaker’s signal down to −20 dB. Automatic labeling of
change points can now be achieved by a simple energy criterion
and by incorporating the aforementioned constraints on the mini-
mum speaker duration. These labels are then used as ground truth
change points for both the near-field and the far-field microphone
signals, as all signals are captured simultaneously.

The database contains about 1.5 h of spoken texts from a total
of 5 male and 5 female speakers. A mixed single-channel signal is
derived by adding the two processed single-channel near-field mi-
crophone signals. Speaker change detection experiments are now
carried out with this mixed signal and with the signal of the distant
microphone array.

5. Experimental results
Speaker change detection exhibits two error classes: missed detec-
tions (MD) and false alarms (FA). For the evaluation we adopted
the definition of missed detection rate (MDR) and false alarm rate
(FAR) proposed in [11]:

MDR =
100 · number of MD

number of change points
% (9)

and

FAR =
100 · number of FA

number of change points + number of FA
%. (10)

A change point at time k is counted as missed, if no change
point is detected in the range of [k − 1s, . . . , k + 1s], i.e. a two-
second window around the change point. Further, the false alarm
count is incremented, if a change point is detected at time k, al-
though no change points occurs in the range of [k−1s, . . . , k+1s].

In all experiments described here we used a feature vector con-
sisting of 39 Mel Frequency Cepstral Coefficients (MFCC) and
36 Linear Predictive Cepstral Coefficients (LPCC). The ETSI ad-
vanced feature extraction front end [12] was used to compute the
MFCC features from 16 kHz input data. LPCC were computed
from the enhanced signal after the two-stage Wiener Filter. The
combined feature vector yielded slightly better results than MFCC
or LPCC alone (see Fig.3). The receiver operating characteristic
(ROC) depicted in Fig.3, 4 and 6 were obtained by varying the
metric decision threshold δ in the range of [10, . . . , 80].

The sliding window approach briefly described in section 2
yields one BIC-value per input frame. This sequence of BIC val-
ues is filtered by a fifth-order Chebycheff filter to smooth the BIC
trajectory. The filter has a group delay of 56 feature vectors (0.56
s), adding to the delay already introduced by the blockwise pro-
cessing. However the filtering was considered necessary in order
to better identify relevant local maxima in the BIC stream.

5.1. Window size

In a first set of experiments we determined the optimal window
size M using the mixed signal obtained from the near-field mi-
crophones. In Fig.4 it can be seen that a performance optimum is
achieved for M = 80. If the window size is too small, the co-
variance terms in eq. (3) cannot be estimated reliably, and if the
window size is too large the BIC trajectory is too smooth mak-
ing it difficult to reliably identify change points. Conducting the
same experiments with the signals of the distant microphones an
increased optimum window size of M = 100 was observed. The
reason is probably that due to the worse signal-to-noise ratio more
smoothing is necessary.

Figu
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Figure 3: ROC for different feature vectors
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re 4: ROC for different window sizes (near-field microphones)

Combining BIC with direction information

ction-of-Arrival (DoA) information obtained from the mi-
hone array as outlined in Section 3 is used to improve the
ge detection accuracy achievable with distant microphone sig-

. The underlying assumption here is that the speakers are spa-
y apart and that they do not move fast while speaking. Then
ker changes indeed may be indicated by observed changes in
ction-of-Arrival, see Fig.5.

The direction information and the BIC evaluation were com-
d as follows: a change point was accepted if and only if both
indicates a speaker change and DoA evaluation indicates a di-
on change. If only one of the two hypothesizes a change it was
idered a false alarm, be it because of poor BIC values or er-
ous DoA estimates caused by low signal-to-noise ratio, reflec-
s or speaker movements. Although not present in our database,
ker movements may well occur in practice and therefore an
rved DoA change was not considered sufficient to decide on a
ker change.

Fig.6 compares the speaker change detection performance for
rent setups. The performance obtained from running BIC on
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Figure 5: Example for DoA estimation and speaker change detec-
tion
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Figure 6: ROC for different setups

the mixed signal of the near-field microphones may serve as a
baseline (”Near Wiener”). It can be seen that using the signal of a
single microphone of the array (”Far 1 Chan Wiener”) greatly de-
grades accuracy. The worst case is a non-enhanced far-field micro-
phone signal (”Far 1 Chan”). Interestingly, running BIC on the en-
hanced microphone array output signal, a performance is achieved
which comes close to the performance obtained with near-field mi-
crophones. Drastic improvements even beyond the performance
of near-field microphones are obtained when using Direction-of-
Arrival information in this latter setup (”Far 6 Chan FSB + DoA”):
an equal error rate of 13.8 % was obtained compared to 25.6 %
with the near-field microphone.

6. Conclusions
In this paper we have investigated the impact of distant micro-
phones on the performance of speaker change detection systems,
based on the BIC criterion. Using the enhanced signal of a mi-
crophone array beamformer the loss compared to the performance
achieved with close-talking microphones could be recovered al-
most completely. Combining BIC with Direction-of-Arrival infor-
mation, which is a byproduct of the adaptive beamformer used,
significant performance improvements could be obtained resulting
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ore reliable change point detection than was achievable with
ose-talking microphone. Speaker changes are detected with
verall delay of about 1 second making it a valuable source of
rmation for applications demanding real-time such as video-
erencing or intelligent user systems.
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