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Abstract

It is often argued that acoustic-phonetic or articulatory features
could be beneficial to automatic speech recognition because they
provide a convenient interface between the acoustic and the linguis-
tic level. Former research has shown that a combination of acoustic
and articulatory information can lead to improved ASR. However
there exists no purely articulatory driven ASR system that outper-
forms state-of-the-art systems driven by acoustic features. In this
paper we propose a novel method for improving ASR on the basis
of articulatory features. It is designed to take account of (1) the
correlations between articulatory features and (2) the fact that not
all articulatory features are relevant for the description of a certain
phonetic unit. We also investigate to what extend an acoustic and
an articulatory feature driven system make different errors.
Index Terms: speech recognition, phonological features, decorre-
lation, relevancy

1. Introduction
The use of phonetic or articulatory features for ASR has been stud-
ied for more than a decade. However, the term articulatory features
covers a variety of concepts, from phonological features (PHFs)
used in phonological sound categorization (e.g. [1]) to acoustic
properties that are presumed to correlate with articulatory measure-
ments [2]. In this paper we deal with PHFs. The main reasons for
using such features are,

• PHFs constitute an intermediate level between MFCCs and
phonemes, perhaps the highest information level that can be
extracted reliably from the speech signal.

• One PHF is involved in the characterization of multiple
phones and multiple languages. Training material can thus
be shared across phones and languages, which may offer a
basis for better multilingual and cross-lingual ASR.

• Pronunciation variations can be naturally described in terms
of phonological feature overlap and assimilation [3].

The need for separate stochastic models to extract the PHFs adds
complexity to the recognition system, and the question is of course
whether this additional effort is justified. Most of the work on
PHF-based ASR has focused on phoneme recognition ([4, 5, 6])
or on small vocabulary word recognition ([7]). Nevertheless, it
has been shown ([8, 9, 10]) that combining PHFs and MFCCs can
raise the performance of large vocabulary continuous speech recog-
nition (LVCSR) systems. In Metze et al. [9] adding 6 to 10 well
chosen PHFs to the MFCC stream yields a 15 % relative reduc-
tion of the WER for a read BN task, and a 7.5 % reduction on
a spontaneous scheduling task. In her PhD, Kirchhoff [10] inves-
tigated several state-level and word-level combination techniques.
With a state-level combination technique the WER dropped from
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03 % to 27.41 % (German Verbmobil corpus). With a word-
l combination technique a WER of 27.97 % WER was obtained.
purely PHF-driven system however performed worse than the

ustic baseline. We owe this, for a part, to the suboptimal use
HFs in the standard HMM framework which is after all opti-
ed for MFCCs. In this paper we investigate how to adapt this
ework so as to raise the accuracy of purely PHF-based ASR.

h a higher performance we also hope to achieve larger gains by
bining a PHF and a MFCC-based system.
The rest of the paper is organized as follows. In Section 2 we

vide details about the PHFs we are using and the way they are
acted. In Section 3 we discuss two major problems with respect
he application of PHFs in the standard HMM framework and
outline possible solutions to these problems. In Section 4 we
pose an integrated technique to implement these solutions, and
ection 5 we present an experimental evaluation.

2. The Phonological Features
former paper [11] we proposed a set of PHFs that is presumed
eet the following two criteria: (1) on the basis of phonological

wledge, it is easy to attribute canonical feature values to all the
netic units, and (2) it is possible to extract the features in a reli-
way by means of an automatically trained system. The chosen

ure set consists of 27 binary features which are organized along
ature dimensions:

• vocal source: voiced, unvoiced, no-activation

• manner: closure, vowel, fricative, burst, nasal, approximant,
lateral, silence

• place-consonant: labial, labio-dental, dental, alveolar, post-
alveolar, velar, glottal

• vowel-features: low, mid-low, mid-high, high, back, mid,
front, retroflex, round

vocal source describes the frame-level presence/absence of
ech and the nature (voiced/ unvoiced) of that speech. The
er features of a frame describe properties of the phonetic unit

hose realization that frame is contributing. Their detection re-
res inputs from a larger time interval. For instance, the distinc-

between a closure and a silence resides in the length of the
activation interval.The features are detected by means of a hi-
chical system comprising four multi-layer perceptrons (MLPs)
Figure 1 and [11] ). We only used the voiced output from the

al source network, since the two other features were largely cov-
by the other networks. Important is that the PHFs are com-

ed starting from the MFCCs, that the MLPs are supplied with a
uence of subsequent MFCC vectors, and that MLP outputs are
sumed to represent posterior probabilities of the binary PHFs.
ing training, vowel frames for instance do not contribute to the
ning of the place consonant MLP. This means that place conso-
t features are considered irrelevant for the description of vowel
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frames, and they should not force the consonant place MLP to pro-
duce prescribed outputs (e.g. zero) for these frames.
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Figure 1: The phonological feature extractor.

On TIMIT data, the accuracy of the manner MLP was 83.9 %,
that of the place-consonant MLP was 83.2 %. These figures are in
line with those reported in [10, 12].

3. Properties of MFCCs and PHFs
In this section we discuss two important differences between
MFCCs and PHFs that call for an adaptation of the standard HMM
framework to make it more effective in combination with PHFs.

3.1. Feature correlations

One of the interesting properties of MFCCs is that their components
are largely uncorrelated. This means that state-level emission dis-
tributions can take the form of Gaussian mixture models (GMMs)
with only a few diagonal covariance mixtures. The binary PHFs
on the other hand are expected to exhibit much larger correlations.
The consonant place of articulation for instance is represented by 7
binary features, which will inevitably be correlated. Consequently
the required emission distributions may no longer be represented
efficiently by diagonal covariance GMMs. One solution would be
to replace them by full covariance GMMs, but this would severely
increase the number of model parameters per Gaussian. It may be
more efficient to adopt one of the following techniques instead:

• Feature selection that aims at removing features carrying in-
formation largely carried by other features.

• Global decorrelation schemes such as PCA to transform the
feature space in the front-end.

• Decorrelation on the basis of state-dependent feature trans-
formation matrices.

Since one PHF is not consistently (across states) correlated with
another, the first technique does not seem to be an option. Since the
correlations are bound to depend very much on the state (e.g. for a
particular consonant mainly the correlations between 2 or 3 of the
near-canonical place features will be important to model), a global
decorrelation scheme is not considered a viable option either. We
therefore explored the third technique.

Obviously, transforming the features in a given state and mod-
eling the transformed features with diagonal covariance GMMs is
equivalent to modeling the non-transformed features with full co-
variance GMMs. Gales [13] has elaborated this approach and pro-
posed a ML methodology to simultaneously train state-dependent
linear transformation matrices (MLLT-matrices) and emission dis-
tributions. We will adopt Gales’ method and extend it in a way that
it can also deal with another problem that is typical for PHFs and
that is discussed in the next subsection.

3.2
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. Feature relevancy

m the description of our PHFs and their training (see also [11])
ollows that not all features are relevant for all phones. Conse-
ntly, the emission distributions on a particular state should only
modeled in the subspace of the relevant features for that state.

ever, since working with different subspaces on different states
ses problems with respect to the equivalences of likelihoods, the
ervation likelihoods may need to be factorized as the product of
levant and an irrelevant observation likelihood. The latter can
be computed on the basis of a global model by adopting prin-

es of missing data theory [14], more in particular by likelihood
utation. In the next section we show that likelihood imputation
state-dependent feature transformations can be embedded in a

sistent probabilistic framework.

4. The proposed probabilistic framework
rder to formulate the re-estimation formulas we introduce m as

index pointing to one of the Gaussians to model. A particular
ssian can be used in different states, but all these states have the
e sets of relevant and irrelevant features respectively.
If we assume that the global model is a multivariate Gaussian
ribution with a full covariance matrix and if SR(i) is the set of
ssians for which feature i is relevant and SI(i) the complemen-
set, then the global model parameters (μg, Σg) can be updated

ording to

(μg)i =

P
m∈SI(i)

PT
t=1 ζt(m)(xt)iP

m∈SI(i)

PT
t=1 ζt(m)

(1)

g)ij =

P
m∈SI(i)∩SI(j)

PT
t=1 ζt(m)(xt − μg)i(xt − μg)jP

m∈SI(i)∩SI(j)

PT
t=1 ζt(m)

(2)
h ζt(m) representing the probability of being in component m
ime t and with xt being the feature vector at time t.
If R(m) and I(m) represent the relevant and irrelevant feature
of Gaussian m, the means of the relevant features of that Gaus-
can be updated as follows:

(μm)i =

PT
t=1 ζt(m)(xt)iPT

t=1 ζt(m)
∀i ∈ R(m) (3)

To update the covariance matrix, we define the so-called accu-
lator Wm as

m)ij =

8>><
>>:

PT
t=1 ζt(m)(xt−μm)i(xt−μm)j

PT
t=1 ζt(m)

∀i, j ∈ R(m)
PT

t=1 ζt(m)(xt−μg)i(xt−μg)j
PT

t=1 ζt(m)
∀i, j ∈ I(m)

0 else

h the zero indicating that no correlation between relevant and ir-
vant features is being modeled. To obtain the covariance matrix
ate formula one must take the MLLT matrices into account. If
e are P such matrices and if Sp is the set of Gaussians using the
e matrix Ap then it can be shown (see [13]) that

ΣR
m = diag(ApWmAt

p) ∀m ∈ Sp (4)

next step is then to update Ap. If feature i is irrelevant in
then the i-th row/column of Ap is equal to the corresponding
/column of the unity matrix. If xR

t and xI
t comprise the relevant

the irrelevant components of observation vector xt respectively,



the likelihood b
Ap
m (xt) generated by Gaussian m ∈ Sp can be fac-

torized as

|Ap|
(2π)d−q/2|ΣR

m|1/2
e[− 1

2 [AR
p (xR

t −μR
m)]t(ΣR

m)−1AR
p (xR

t −μR
m)]

1

(2π)q/2|Σg,I |1/2
e[− 1

2 (xI
t −μg,I )(Σg,I )−1(xI

t −μg,I )]

which is the product of an informative part, modeled by Gaussian
m and a part imputed from the global model:

b
Ap
m (xt) = b

Ap
m (xR

t |m) limput(x
I
t |μg , Σg) (5)

We initialize all MLLT-matrices to the unity matrix and update the
elements corresponding to relevant features using Gales’ algorithm.
It makes use of auxiliary matrices G(k) defined in terms of the pre-
viously defined accumulator Wm,

(G(k))ij =
X

m∈Sp

(Wm)ij

(σ2
m)k

TX
t=1

ζt(m) ∀k ∈ R(Sp) (6)

Only the accumulators differ from those in [13]. If we denote pk as
the k-th row of the transposed adjunct matrix of the actual Ap

1, the
k-th row of the new Ap is obtained as

(Âp)ki =

j
αk pk[(G(k))−1]i ∀k, i ∈ R(Sp)
δki else

(7)

with α being equal to

αk =

s P
m∈Sp

ζt(m)

pk(G(k))−1pt
k

∀k ∈ R(Sp) (8)

The entire 4-step algorithm to estimate all model parameters, can
be summarized as follows:

1. Re-estimate the global model by means of (1) and (2).

2. Re-estimate the Gaussians using (3) and (4).

3. Re-estimate the MLLT-matrices Ap using (7) and (8)

4. Got to 2 until convergence, or appropriate criterion satisfied

Note that step 3 of this algorithm is in itself an iterative step since
the re-estimation formula for row k depends on the cofactor row pk

which is a function of all rows but row k. So, we need to iterate in
order to obtain good estimates for the new rows.

5. Recognition Experiments
In this section we present results with two types of recognizers:
MFCC- and PHF driven systems both with and without the applica-
tion of the decorrelation/irrelevancy handling technique. All recog-
nition experiments were performed with the HTK-toolkit [15]. The
database is TIMIT, and the core test set (24 speakers × 8 sentences)
is the test database. The LM is a back-off bigram learned from the
training and test utterances (see [3]). The acoustic models are cross-
word triphone HMMs with underlying tied distributions (GMMs).
State tying was performed using DT-based clustering. The train-
ing involved 2 Baum-Welch re-estimation steps for each number
of mixtures, and the number of mixtures was changed from 1 to
6. When applying decorrelation, we performed 10 iterations of our
4-step algorithm and we allowed 100 iterations in step 3 of that al-
gorithm. Next, three more Baum-Welch iterations were performed.

1The adjunct matrix is obtained by replacing all elements of the matrix
by their cofactors and by transposing this cofactor matrix
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. PHF-driven ASR

the experiments with the PHF-driven system we used 25 fea-
s (from the vocal source features only voiced was retained) and
r time derivatives (= 50 features per frame). Without the appli-
on of our decorrelation strategy we obtained the baseline results
ed in Table 1. Using a block diagonal MLLT-matrix (two blocks
5× 25) per phoneme (the central phoneme of the triphone) and
ming that all features are relevant, we obtained the 41-MLLT
lts of Table 1. Apparently, the WER drops from 8.34 % to

1 % (improvement of 26 % relative) by applying decorrelation.
including irrelevancy modeling on top of that, the WER did not
rease any further. The best WER was 6.37 % now (see Table 2).
ossible reason for this may be that the general model was too
ple 2.

system #mix # pars. WER D S I

baseline 1 184300 10.51 14 122 29
41-MLLT 1 (+51250) 7.58 17 90 12
baseline 2 368600 9.43 16 105 27

41-MLLT 2 (+51250) 7.20 20 77 16
baseline 3 552900 9.17 14 103 27

41-MLLT 3 (+51250) 6.11 17 65 14
baseline 4 737200 8.34 15 90 26

41-MLLT 4 (+51250) 6.69 22 67 16
baseline 6 1105800 8.85 20 88 31

41-MLLT 6 (+51250) 6.18 15 66 16

le 1: WER (%) for the baseline PHF system (25 features+25
a’s) and the system with MLLT-matrices trained on all features,
different numbers of Gaussian components.

41-MLLT with relevancy handling

#mix # pars. WER D S I

1 122278 (+23540) 9.24 23 104 18
2 244506 (+23540) 8.09 20 87 20
3 366734 (+23540) 7.58 19 83 17
4 488962 (+23540) 6.43 16 70 15
5 611190 (+23540) 6.37 18 66 16
6 733418 (+23540) 6.50 17 67 18

le 2: WER (%) for the MLLT system with relevancy handling for
erent numbers of Gaussian components

. MFCC-driven ASR

rder to asses the obtained PHF-based results we have also con-
cted a standard MFCC-based system with 39 input features.
performances of that system with and without decorrelation

MFCC parameters are presumed to be relevant at all times) are
ed in Table 3. As before we used 41 block-diagonal (3 blocks
3 rows each now) MLLT matrices. Apparently, the decorrela-
technique is effective here too: the WER drops from 4.59 % to

9 % (20 % relative improvement). What is also clear is that the
CC system outperforms the PHF system.

We used a diagonal covariance gaussian distribution, but we will test
e complex models soon



system #mix # pars. WER D S I

baseline 1 99138 7.07 27 69 15
41-MLLT 1 (+20787) 6.43 22 64 15
baseline 2 198276 6.05 21 66 8

41-MLLT 2 (+20787) 5.29 25 50 8
baseline 3 297414 5.99 22 64 8

41-MLLT 3 (+20787) 4.46 18 44 8
baseline 4 396552 5.16 20 56 5

41-MLLT 4 (+20787) 4.20 16 43 7
baseline 6 594828 4.59 18 50 4

41-MLLT 6 (+20787) 3.69 17 36 5

Table 3: WER (%) for the baseline MFCC system (39 parameters)
and the MFCC system with MLLT-matrices for different numbers of
Gaussian components.

5.3. Combining the two systems

If we can show that the MFCC and PHF-driven systems behave
differently, then we have an argument for investigating whether a
combination of the systems would lead to a further improvement of
the ASR performance. In order to show this, we have compared the
errors made by the two-systems (best configuration for each) and
we found (see Table 4) that for 5.3 % of the words, the MFCC and
the PHF-based ASR generated a different result. If we would be
able to correct all the errors of the MFCC system that correspond
to a correct solution in the PHF system, and if we would be able to
avoid the introduction of new errors at other places, the WER could
be reduced from 3.7 % to 2.6 % (relative improvement = 30 %).
Obviously we will not be able to conceive such a good combination
strategy. On the other hand, the maximum attainable improvement
may be larger if not only the top-1 hypotheses but the top-N hy-
potheses of the individual ASR systems were taken into account.

error type count (%)

both correct 1470 93.6
MFCC wrong and PHF correct 18 1.15
MFCC correct and PHF wrong 47 3.00

both wrong, different errors 18 1.15
both wrong, same errors 17 1.10

total #words 1570 100

Table 4: Number of word errors in the outputs of MFCC and PHF
recognizers.

6. Conclusions
In this paper we have investigated how to adopt the standard HMM
approach to ASR so as to achieve the best possible performance
when no MFCCs but Phonological Features (PHFs) are used as the
acoustic observations. It was argued that unlike MFCCs PHFs are
strongly correlated, and moreover, not all PHFs are relevant in all
states. On the basis of these arguments we have proposed a novel
decorrelation and irrelevancy handling technique which can be con-
sidered as an extension of a decorrelation technique originally pro-
posed by Gales [13]. Experiments on TIMIT have revealed that the
WER of a PHF-based ASR can be reduced by about 26 % rela-
tive, but that this improvement is insufficient to bring the WER at
the same level of that of a state-of-the art MFCC-based ASR sys-

tem
help
of 2
bas
beh
bin
pro

Thi
tion
SB

[1

[2

[3

[4

[5

[6

[7

[8

[9

[10

[11

[12

[13

[14

[15

360

INTERSPEECH 2006 - ICSLP
. Another finding is that the decorrelation approach is also very
full to improve the MFCC-based ASR (relative improvement
0 %). Comparing the errors made by the best MFCC and PHF-

ed systems we were also able to establish that the two systems
ave differently, and that there is support for the thesis that com-
ing the hypotheses of both systems might lead to further im-
vements of the recognition accuracy.
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