
Acoustic Analysis and Auto
of Spontaneous Child

M. Gerosa∗, D. Giuliani∗ an

(∗) Centro per la Ricerca Scientifica e Tecnologic
(+) Speech Analysis and Interpretation Laboratory,

University of Southern California, Los
gerosa@itc.it, giuliani@itc.it

Abstract

This paper presents analyses, and recognition experiments, on
spontaneous American English speech collected from children
aged from 8 to 13 years. These analyses focused on variations
in phone duration and on the scattering of phones in the acous-
tic space and were aimed at achieving a better understanding of
spectral and temporal changes occurring in spontaneous speech
produced by children of various ages with a view toward develop-
ing robust automatic speech recognition applications. The speech
data were partitioned in two subsets depending on the annotated
presence/absence of explicit occurrences of spontaneous speech
phenomena such as fillers, false starts and other disfluencies. All
the analyses carried out, as well as the results of recognition exper-
iments, show a significant difference between these two partitions.
In particular, recognition performance for the subset containing
annotated spontaneous speech phenomena was significantly worse
(by almost 15%) than the one achieved for the other subset. Rel-
ative improvements due to acoustic model adaptation and normal-
ization on both data partitions were comparable, underscoring that
significant performance degradation happens due to spontaneous
speech variability beyond those reflected in segmental spectral
characteristics.
Index Terms: speech analysis, automatic speech recognition, chil-
dren’s speech, spontaneous speech

1. Introduction
Automatic speech recognition has a huge potential for use by chil-
dren. In addition to conventional applications in which speech re-
places, or complements, other modalities in human-machine inter-
action, there are applications such as interactive, computer-based
pronunciation or reading tutors, or foreign language learning, in
which speech is the key enabling technology.

It is well known that characteristics of speech such as pitch,
formant frequencies and segmental durations are related to the age
of the speakers [1, 2] and the increased variability in children’s
speech makes the automatic recognition task inherently more dif-
ficult for children than for adults. In recent years, research is-
sues, such as vocal tract length normalization, speaker adaptive
training, language modeling and pronunciation variation modeling
have been investigated for improving children’s speech recogni-
tion [3, 4], bringing recognition results near those achieved for
adult speakers.

However past efforts focused mainly on read speech, while
recognition of spontaneous children’s speech remains still a less
studied and very difficult task due to high linguistic variability
and the presence of spontaneous speech phenomena (notably dis-
fluency phenomena such as hesitations, false starts, breath noise,
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hter) and speech extraneous to the main dialog topic [5]. Al-
gh spontaneous speech effects are quite common in human
munication and may be expected to be prevalent in human
ine discourse as people become more comfortable convers-
ith machines, modeling of speech disfluencies is still an open
. In addition, spontaneous speech is not only linguistically
variable, but is also characterized by larger acoustic variabil-

ompared to read speech.
This paper reports results of analysis and recognition on spon-
us speech collected from children aged between 8 and 13

s. The term “spontaneous speech” represents a broad range of
acteristics that manifest themselves at different linguistic lev-
including segmental, lexical, syntactic and discourse) and as
-linguistic aspects, notably disfluencies and markers such as

hter. We also note that the type and extent of these effects may
both within and across interactions and subjects, and should
propriately reflected in the analysis. As a step toward that, in

paper, we consider speech data with and without explicitly an-
ted spontaneous speech phenomena separately in the analysis
recognition experiments.
This paper is organized as follows. The speech corpora used
escribed in Section 2. Section 3 presents some analyses on
oral and spectral characteristics of spontaneous speech, com-

d to those of read speech. Section 4 describes the automatic
ch recognition experiments that were carried out. Final re-
s are given in Section 5 which concludes the paper.

2. Speech Corpora
different corpora of children’s speech were used in this work:
ID read speech corpus, and the CHIMP spontaneous speech

us. Details of the two corpora are summarized below.
The CID corpus [6] is an American English read speech
ase collected from 436 children, aged from 5 to 18 with a
ution of 1 year of age, and from 56 adult speakers. Record-
were made in a sound-treated booth using a high-fidelity mi-
hone (Bruel & Kjaer model #4179) connected to a real-time
form digitizer with 20 kHz sampling rate and 16-bit reso-
n. The signals were down-sampled to 16 kHz before being
zed. Only a subset of this database was used in this work.
subset consists of two repetitions of five phonetically rich sen-
s from six speakers (3 females and 3 males) for each age in
ge range 8-13, for a total of 36 subjects.
The CHIMP corpus [5] is an American English spontaneous
ch database collected from children aged between 8 and 14
s. This corpus represents spoken dialog interactions collected
Wizard of Oz (WoZ) experiment using a popular interactive
puter game “Where in the U.S.A. is Carmen Sandiego?” de-
d for children aged eight and older. Data from a total of 160
ren and 7 adults were collected. High-quality audio record-
were collected using a close-talking head-mounted micro-
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phone (Sennheiser HMD 410) and a far-field desktop microphone
(Sennheiser K6-C with a cardioid ME64 capsule). Only the signals
collected with the head-mounted microphone from 144 speakers
were used in this work. Manual annotation of spontaneous phe-
nomena, like hesitations, filled pauses and non verbal sounds such
as laughter and cough, was available on the whole corpus.

The CHIMP corpus was partitioned into test and training sets,
summarized in Table 1. The test set, that consists of speech from 6
children (3 females and 3 males) for each age in the age range 8-13,
was further partitioned in two subsets: the utterances without any
explicitly annotated spontaneous speech phenomena were grouped
in a subset called “T1” while the utterances containing annotated
spontaneous speech phenomena were grouped in a subset called
“T2”. Both subsets contained utterances from all the 36 speakers
in the CHIMP test set.

Partition Training T1+T2 T1 T2
Speaking style spontaneous
Signal quality clean
Language American English
Speaker age 8-14 8-13 8-13 8-13
# speakers 108 36 36 36
# hours 8h:07m 2h:38m 1h:55m 0h:43m
# utterances 29756 9563 7286 2277
# words 89893 34036 24985 9051

Table 1: Partitioning of the CHIMP speech corpus.

3. Spontaneous Speech Analysis
This section presents several acoustic analyses on read and sponta-
neous American English speech collected from children aged from
8 to 13 years. These analyses were carried out in order to obtain
a better understanding of the spectral and temporal differences be-
tween read and spontaneous speech of children in this age range.

3.1. Phone Duration

Herein, we analyzed phone duration as a function of age on read
and spontaneous speech. The mean phone duration was computed
by first averaging phone duration over all phones of each speaker
and then across all speakers in each age group.

Duration statistics were computed by exploiting a phone-level
segmentation produced automatically by forced-alignment. Each
utterance was time-aligned with the HMM concatenation corre-
sponding to the uttered words allowing insertion of an optional
“silence” model between words and at the beginning and the end
of the utterance. Segments of signals aligned with the “silence”
HMM were not taken into account in computing temporal statis-
tics.

Figure 1 reports the mean phone duration as a function of age
for children, computed on the subset of CID corpus described in
Section 2 (6 speakers for each age) and on the CHIMP training
set. As expected [1, 2], mean phone duration varies with age and
older children exhibit shorter mean phone durations. However, it
can be noted that mean phone durations measured on spontaneous
speech is much smaller than the ones measured on read speech for
all the corresponding age groups. In addition, the effect of age is
much less evident in case of spontaneous speech. In fact, while in
the case of read speech the mean phone duration for children of
age 13 is about 20% smaller than for children of age 8 (138 msec
vs. 112 msec), in the case of spontaneous speech this difference
was only 10% (99 msec vs. 89 msec). We have to point out that
the mean phone durations computed on the CID subset are likely
affected by reading ability.
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et of the CID corpus and on the CHIMP training set.

Characterization of the Acoustic Space

is work we attempted to characterize the acoustic space mea-
g the scattering of the Gaussian densities modeling phones.
this purpose, we modeled each phone by means of a single
sian density and we measured how much these Gaussian den-
were scattered in the acoustic feature space, when Gaussian

meters were estimated from speech examples collected by a
of speakers. A statistical measure was used to determine how
phones were scattered in the acoustic space.

Given two phones i and j, modeled by Gaussian distributions,
; i,Σi) and N ( ; j ,Σj), the distance between them can
easured by means of the Bhattacharyya distance as follows:

(i, j) =
1

8 i − j
T Σi − Σj

2

−1

i − j +

+
1

2
log

Σi−Σj

2

|Σi||Σj |
(1)

e is a D-dimensional vector and i, Σi, j and Σj are the
vectors and the covariance matrices of the Gaussian distri-

ns of phones i and j, respectively.
Given a set of N Gaussian densities the average Bhattacharyya
nce can be defined as follows:

AveB =
2

N(N − 1)

N−1

i=1

N

j=i+1

B(i, j). (2)

The average Bhattacharyya distance, AveB, can be consid-
a statistical measure of how scattered the N phones are in the
stic space. High values of AveB indicate that phone distri-
ns are well scattered in the acoustic space and thus phones
ld be more easily discriminated, while low values of AveB
be interpreted as a greater overlap of the phone distributions
thus the phone discrimination task should be more difficult.
To estimate the parameters of Gaussian densities associated
ones, we trained context-independent (CI) HMMs adopting

l cases a three-state left-to-right topology with a single Gaus-
density per state. Each speech frame was parameterized into a
imensional observation vector composed of 13 mel frequency
tral coefficients (MFCCs) plus their first and second order
derivatives. In computing the average Bhattacharyya dis-
, only Gaussian densities associated to the central states of

ext-independent HMMs corresponding to vowel sounds were
idered. For the experiments reported below, we trained a set
I HMMs on the T1 subset, on the T2 subset and on the whole



CHIMP test set (“T1+T2”). For comparison purpose, CI HMMs
were trained also on the CID subset. Table 2 reports the average
Bhattacharyya distance for both spontaneous and read speech.

Test set T2 T1+T2 T1 CID
Bhattacharyya distance 2.12 2.56 2.76 3.93

Table 2: Average Bhattacharyya distance across vowel sounds
computed on the CID subset and the CHIMP test set partitions.

The average Bhattacharyya distance computed on HMM sets
trained on read speech is greater than the distance computed on
HMMs trained using spontaneous speech. In addition, it can be
noted that speech in the T2 subset presents a lower distance than
speech in the T1 subset. Similar results were reported in [7], where
it is shown that the cepstral distribution of spontaneous speech is
significantly reduced with respect to that of read speech. However,
we have to point out that the high average Bhattacharyya distance
obtained for the CID subset may also be due to the limited number
of different words uttered.

3.3. Acoustic-space reduction ratio between T1 and T2 sub-
sets

To complement the measures of average Bhattacharyya distance
carried out in the previous Section, we tried to quantitatively an-
alyze the reduction of the acoustic space between spontaneous
speech in subset T2 with respect to that in subset T1. To do this
we adopted the method proposed in [7], by exploiting the same CI
HMMs used to compute the average Bhattacharyya distance in the
previous Section. First, for each phoneme p, the distance of the
mean vector of the Gaussian distribution modeling its central state
and the center of the distributions of all phonemes was calculated.
Then the ratio between the distance for the HMMs trained on the
T2 subset and the distance for the HMMs trained on the T1 subset
was calculated as follows:

redp =
|| T2

p − Av[ T2]||
|| T1

p − Av[ T1]|| , (3)

where T2
p is the mean vector of phoneme p estimated on subset

T2, T1
p is the mean vector of phoneme p estimated on subset T1

and Av[·] indicates the average computed over all the phonemes.
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Figure 2: Reduction ratio between T1 and T2 subsets estimated for
each phone.

Figure 2 shows reduction ratios between T1 and T2 for the
basic units that compose the CMU dictionary phone set, used in
this work. The units /OY/ and /AX/ which rarely occurred in the
utterances considered were not considered in this analysis. It can
be noted that the great majority of vowels and consonants show
a reduction in cepstrum space when parameters are estimated on
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2 subset with respect to when parameters are estimated on T1
et. The mean reduction ratios for vowels and consonants was
parable – 0.89 and 0.92, respectively.

4. Recognition Experiments
t of recognition experiments was carried out with the aim of
tigating how much the extent of spontaneous effects of chil-

’s speech (as deemed by the human annotations) can influence
obustness of speech recognition performance.
State-tied, cross-word triphone HMMs were adopted for
stic modeling. In particular, a Phonetic Decision Tree (PDT)
used for tying the states of triphone HMMs. Output distri-
ns associated with HMM states were modeled with mixtures
up to 8 diagonal covariance Gaussian densities.

The CMU dictionary phone set, composed of 39 basic units,
adopted for transcription and annotation of all English cor-
considered in our experiments. “Silence” was modeled with
gle state HMM. In addition a number of models for common
verbal phenomena were trained.
Each speech frame was parameterized into a 39-dimensional
rvation vector composed of 13 mel frequency cepstral coeffi-
s (MFCCs) plus their first and second order time derivatives.
tral mean subtraction was performed on static features on an
ance-by-utterance basis. For the experiments considered, a
ram language model implemented with a word-loop FSN hav-
00 words was deemed adequate and used. Unigram probabil-
were estimated as the relative frequency of each word in the
ing portion of the CHIMP corpus (gains due to adaptive and
er order LMs for this data were reported in [5]).

Baseline Results

rained a set of cross-word triphone HMMs using the CHIMP
ing set. For this set of models, used as a baseline, the PDT
scheme resulted in about 1000 independent states for a total

out 8000 Gaussian densities.
Table 3 reports recognition results achieved on T1 and T2 test
by using baseline models. For comparison the results on the
le CHIMP test set (“T1+T2”) are also reported.

Test Set
HMM set T1+T2 T1 T2
Baseline 34.8 30.1 48.0

e 3: Recognition results (% WER) obtained on the CHIMP test

The Table shows that the difference in performance between
two subsets T1 and T2 is significant. In fact, the WER,
ved by using the baseline system on T2 test set (48.0%) is
t 60% higher than WER achieved on T1 test set (30.1%).

We tried to correlate these recognition results with the spon-
us effects shown by the utterances of each speaker. For this

ose we first computed the WER for each speaker in the whole
MP test set and then we computed the correlation between the

and some clues revealing the extent of spontaneous effects
nt in the speech of a particular speaker. The three clues that
nalyzed for each test speaker were the percentage of spon-
us sentences uttered (in the games they played), the num-

of different words used, and the number of hesitations and
pauses normalized by the number of games played by each

ker. For each of these characteristics we estimated the correla-
coefficient with respect to the WER. Each characteristic pre-
d a positive correlation with WER: the most correlated was
umber of hesitations/filled pauses (+0.65), followed by the

entage of sentences with annotations marking spontaneous ef-
(+0.60). In comparison, the number of different words was
lated to a lower degree (+0.5) with WER.



4.2. Speaker Adaptive Acoustic Modeling

Speaker adaptive modeling aims at reducing or compensating for
acoustic variations induced by different characteristics of each
training and testing speaker. In this work, speaker adaptive acous-
tic modeling was investigated through vocal tract length normal-
ization (VTLN), speaker adaptive training (SAT) and constrained
MLLR based speaker normalization (CMLSN).

In particular, the training and recognition procedures adopted
for implementing VTLN follow closely those proposed in [8]
and are described in detail in [4]. For implementing SAT, we
adopted the variant of the SAT algorithm developed by Gales [9],
which makes use of an affine transformation, estimated through
constrained MLLR, for mapping acoustic observations of each
training and testing speaker. CMLSN is a speaker normalization
method which performs speaker normalization by transforming
the acoustic observation vectors by means of speaker-specific con-
strained MLLR transformations. Details about this method can be
found in [4].

Three HMM sets were trained using the SAT, VTLN and
CMLSN training procedures on the CHIMP training set. In this
case, we assumed that the data of each test speaker were available
in block for multiple processing. The decoder was run twice, and
the output of the first decoding step was exploited as a supervision
for system adaptation/normalization before the second decoding
step took place. In addition to speaker normalization, unsuper-
vised static speaker adaptation of acoustic models was performed
by adapting means and variances of Gaussian densities through
MLLR before the second decoding step. Two regression classes
were defined and the associated transformation matrices were es-
timated through three MLLR iterations exploiting the data of each
speaker.

Table 4 reports recognition results achieved on the CHIMP
test sets by using baseline models (“2-pass Baseline”) and models
trained using the VTLN, CMLSN and SAT methods.

Test Set
HMM set T1+T2 T1 T2

2-pass Baseline 31.5 26.4 45.8
VTLN 31.0 25.5 43.9

CMLSN 29.9 25.0 43.3
SAT 30.1 25.3 43.3

Table 4: Recognition results (% WER) obtained on the CHIMP
test sets using HMMs trained with and without speaker adaptive
acoustic modeling methods.

All the results reported in Table 4 were achieved with the
second decoding pass after performing MLLR model adapta-
tion. When recognizing with HMMs trained using speaker adap-
tive acoustic modeling procedures, the difference in performance
achieved on the two subsets remained almost the same with all
the three normalization methods. With the CMLSN method, the
relative reduction in WER on T2 is 5.5% compared to 4.1% on
T1 (compare values in rows “CMLSN” and “2-pass baseline”).
There is limited effectiveness of speaker adaptive acoustic mod-
eling techniques on the CHIMP test set. The reason for this has
not been fully understood. However, one possible explanation is
that the high error rate in the CHIMP test set is due to linguis-
tic/acoustic factors different from inter-speaker acoustic variabil-
ity, and thus speaker adaptive acoustic modeling techniques have
only limited impact in this case.

5. Conclusions
In this paper, analyses on spontaneous children’s speech were pre-
sented. These analyses focused on phone duration and on the scat-
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g of phones in the acoustic space. It was found that phone
tion for spontaneous speech is significantly lower than that for
speech uttered by children of the same age. Phone duration

eases as age increases for both read and spontaneous speech:
ever the decrease observed between speech uttered by children
e 8 and age 13 for read speech is almost twice as that observed
pontaneous speech.
Measurements on scattering of phones in the acoustic space
rm those reported in [7] for adult speech. Phone distributions
ated on read speech are more scattered in the acoustic space
phone distributions estimated on spontaneous speech and thus
he latter the phone discrimination task should be more dif-
t. All the analyses carried out show a significant difference
een the two partitions of the CHIMP test set considered, T1
T2. This difference is reflected in the recognition results ob-
d for the two subsets: in fact WER for T2 is 60% higher than

for T1 (48.0% WER vs. 30.1% WER). However, it can be
med that this difference in performance is likely to be caused

by the presence of spontaneous speech phenomena that are
level beyond that manifested in the segmental acoustic differ-
s between the two subsets.
Finally, we have to point out that speaker normalization tech-
es showed only a limited effectiveness on the CHIMP test set
comparable performance on data with and without predomi-
e of spontaneous effects as given by human annotations). Ro-
ASR solutions should hence consider models beyond the con-
ional acoustic adaptation and normalization; these are topics
ur future work.
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