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Abstract
The accuracy of distributed speech recognition has been shown to
be very sensitive to errors occurring during transmission. One rea-
son for this is that the classifier, usually trained under error free
conditions, is unable to cope with the mismatch between an error
free and error prone channel. In this paper we present a novel de-
cision rule for classification which is able to account for channel
errors. To achieve this, the classical Bayesian speech recognition
approach has been reformulated for the server side, where the ob-
servation is known only to the extent, as is given by its a posteriori
density function. We present a method to estimate the a posteri-
ori density which is based on a Markov model of the source, which
captures correlations of both static and dynamic features. A practi-
cal implementation is given, accompanied by experimental results
for distributed speech recognition over an IP-network.

Index Terms: distributed speech recognition, channel robustness,
predictive classification.

1. Introduction
The client-server architecture of distributed speech recognition
(DSR) enables a mobile device to access sophisticated speech
recognition services without the need to run and maintain com-
plex speech recognition software and application data. A front-
end, running on the mobile client, extracts the speech features,
compresses them, protects them against channel errors and sends
them over a communication link to the backend server, where de-
coding, uncompression and automatic speech recognition (ASR)
takes place.

Since the recognition accuracy is severely affected by trans-
mission errors, many proposals have been made to improve over
the error mitigation scheme originally proposed in the ETSI stan-
dard ES 202 050, see [1] and the references therein. Some of them
may be categorized as point estimation techniques. They attempt
to correct or reconstruct the erroneous data using either forward
error correction or the redundancy of the data. Others modify the
ASR-decoder in order to deemphasize the contribution of those
feature vectors on the classification, which are deemed erroneous.

In our prior work we have cast the channel error mitigation
problem in a probabilistic formulation. We have developed a prac-
tical approach to compute so-called soft-features, i.e. the a poste-
riori probability of the original error-free feature vector, given all
received feature vectors, and used them in the uncertainty decod-
ing rule, which has been proposed by Deng et al. for noise-robust
speech recognition [2]. This resulted in improved channel error
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igure 1: Block diagram of a distributed recognition system.

stness compared to the error mitigation proposed in the ETSI
dard, both for circuit-switched and packet-switched transmis-
.
In this paper we go one step further and derive a predictive
sification rule, given the feature vectors at the server side, and

by experimental evidence that this novel rule outperforms the
rtainty decoding rule. Further, the Markov model of the error-
feature vector sequence is extended in order to capture the

elation between both consecutive static and dynamic features,
h results in additional performance improvements.

In the next section we present the novel predictive decision
, and Section 3 details practical aspects on how to use this
sifier in the context of DSR over a channel characterized by
et losses. Section 4 presents the experimental results and the
r finishes with conclusions drawn in Section 5.

2. Predictive Decision Rule
Bayesian Speech Recognition

summarize very shortly the classification problem for recog-
g continuous speech: Given the sequence of feature vectors X

acted from an utterance, the statistical speech recognition at-
ts to find the sequence of words Ŵ out of a given vocabulary
h maximizes the probability P (W|X). Using the Bayesian
rem this can be expressed more conveniently as maximizing
product between observation probability and word sequence
ability:

Ŵ = argmax
W

p(X|W)P (W), (1)

re both probability terms can be estimated in a training phase,
r to recognition.

Predictive Classification

consider the distributed speech recognition system depicted in
re 1.
The feature extraction at the client side delivers the sequence
ature vectors X, whereas at the classifier input the received se-
ce Y is available. Instead of plugging-in the received vectors
the recognizer as if they were the sent ones, we reformulate
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the classification to be performed with the received vectors. There-
fore, the problem reduces now to finding the word sequence which
satisfies the relation:

Ŵ = argmax
W

p(Y|W)P (W). (2)

Here, the probability of observing Y given W cannot be obtained
by training any more, as it certainly depends on the, possibly time-
varying, channel properties, not known at training time.

The way around this problem that we take here is to express
P (W|Y) as a predictive density function [3]:

P (W|Y) =

Z
P (W|X) · p(X|Y)dX (3)

Here, we have used the fact that P (W|X, Y) = P (W|X), since
the received vectors do not contain more information about the
words than is already present in the sent vectors.

Thus, applying now the Bayes theorem we obtain the predic-
tive decision rule:

Ŵ = argmax
W

Z
p(X|W)

p(X|Y)

p(X)
dX · P (W) (4)

Note that an expression similar to (4) was also used in other
works [2], [9], however the a priori p(X) had been neglected. We
show that in our case this term is very important and significant
improvement is obtained when considering it.

By modeling the words as sequences of states S =
(s1, . . . , sT ) in a Hidden Markov Model (HMM) and using the
so-called maximum approximation, the observation probability
p(X|W), where X = (x1, . . . ,xT ), can be computed by the
Viterbi algorithm. In the case of decision rule (1) one needs to
compute

p(X|W) ≈ max
S

TY
t=1

P (st|st−1)p(xt|st). (5)

Using the new decision rule (4) one obtains:

Z
p(X|W)

p(X|Y)

p(X)
dX ≈ max

S

TY
t=1

P (st|st−1)q(Y; st) (6)

where

q(Y; st) =

Z
p(xt|st)

p(xt|Y)

p(xt)
dxt (7)

This decision rule requires knowledge of the posteriori den-
sity p(xt|Y). In the next section we present an approach how to
determine this term and how to evaluate (7) without expensive nu-
merical integration.

3. Practical aspects
3.1. Computation of the a posteriori density function

Let Y = (y1, . . . ,yT ) be the sequence of received feature vec-
tors, where the lost frames in case of packet-oriented transmission
are recreated at random so that the sequences X and Y have the
same length. Each feature vector at time t consists of static and dy-
namic (velocity and acceleration) components: xt = (x̃t, x̃

′

t, x̃
′′

t ).
Note that only the static components are transmitted, while the dy-
namic components are computed from received static components.
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Our goal is to compute the conditional probability p(xt|Y),
the a posteriori probability density function of the sent vector
ch time t when the received sequence Y is known. In the fol-
ng, we employ models of increasing complexity to determine
posterior.

. Memoryless source

ery simplistic approach is to consider the signal source be
oryless. It can be easily shown that this is equivalent to

t|Y) = p(xt|yt), if we assume the channel to be memory-
The probability term (7) then simplifies to:

Z
p(xt|st)

p(xt|yt)

p(xt)
dxt =

Z
p(xt|st)

p(yt|xt)

p(yt)
dxt (8)

If the channel is error free, p(yt|xt) = δ(xt − yt) and (8) re-
s to the ordinary observation probability p(xt|st), since the
tant p(yt) is irrelevant. During packet loss, on the other
, p(yt|xt) = p(yt) which reduces (8) to unity, resulting in
rginalization of the features [4].

. Static components modeled as Markov source

approximation made in the previous section has the disadvan-
that it ignores the correlation between consecutive vectors. It
pected that a lost vector can be retrieved to some extent if the
ecessor vector is known. To check that, we analyzed the en-
ies and mutual information of the cepstral features extracted
g the advanced front-end for distributed speech recognition
dardized by ETSI [5]. The static component x̃t consists of
n subvectors, each one grouping two cepstral coefficients. Ta-
lists the entropies and mutual information for each subvector

e 1: Entropies and mutual information among the subvectors
uced by the ETSI advanced DSR front-end.
bvector 1 2 3 4 5 6 7

6 6 6 6 6 5 8

(ṽt) 5.8 5.8 5.8 5.8 5.8 4.8 7.7

ṽt; ṽt−1) 2.6 2.1 1.6 1.4 1.2 1.0 3.4

ṽt;vt−1) 3.0 2.4 1.9 1.7 1.5 1.3 4.5

Each subvector was quantized individually by a split vector
tization scheme resulting in seven bit patterns of length M .
mutual information I(ṽt; ṽt−1) indicates how much informa-
about the current subvector ṽt is already present in the previ-
subvector ṽt−1.

It is therefore reasonable to consider x̃t a Markov process
h can be described by Hidden Markov Model (HMM) the-
[6, p.321]. From now on, we denote by x̃t any of the sub-
ors. Let x̃t ∈ Q be the quantized subvector, where Q =
)|i = 1, . . . , 2M}, is the set of N = 2M codebook centroids.
mplete specification of a HMM is given by the set of states,

set of observation symbols and three sets of probability mea-
s A, B, π, where A is state-transition probability distribution,
the observation symbol probability distribution and π denotes
nitial state distribution. We consider the following HMM:

• N = 2M states x̃(i); i = 1, . . . , N

• N output symbols per state ỹt ∈ Q

• A = aij = P (x̃t = x̃(j)|x̃t−1 = x̃(i)); i, j = 1, . . . , N



• B = bj(k) = P (ỹt = x̃(k)|x̃t = x̃(j)); k, j = 1, . . . , N

• π is an uniform distribution

Note that we use uppercase P (·) to denote the probability
mass function of a discrete random variable and lowercase p(·)
to denote the coresponding density consisting of a finite sum of
Dirac pulses. The term P (x̃t = x̃(i)|ỹ1, . . . , ỹT ) can now be
computed by the forward-backward algorithm. Note that this pro-
cedure was used in [7] in order to get the most probable ”state”
sequence, whereas we are here interested in the posterior state dis-
tribution rather than a point estimate.

3.1.3. Improved source modeling

The assumption of a Markov source for x̃t is certainly far from be-
ing true. Experiments have shown that the dependency cannot be
reduced only to the previous frame. Actually, x̃t depends also on
x̃t−2, x̃t−3 etc. A trade off between complexity and accuracy is
to consider the whole vector, i.e. static and dynamic components,
xt = (x̃t, x̃

′

t, x̃
′′

t ) to be generated by a Markov source. In fact, the
dynamic components hide some longer time span dependencies.
The last line of Table 1 lists the mutual information among ṽt and
vt−1, which indicates how much is known about the static compo-
nent of the current frame when the static and dynamic components
of the previous frame are known. In order to compute this, the dy-
namic components were also vector quantized using D1 = 3 bits
for velocity and D2 = 1 bit for acceleration.

It can be observed that more redundancy can be exploited if
the state space of the HMM defined above is extended to represent
both static and dynamic feature vector components. We therefore
build following HMM with an extended state space:

• N = 2M+D1+D2 states x(i); i = 1, . . . , N

• 2M output symbols per state ỹt ∈ Q. Note that only the
static components are observed, because the delta and ac-
celeration are not transmitted.

• A = aij = P (xt = x(j)|xt−1 = x(i)); i, j = 1, . . . , N

• B = bj(k) = P (ỹt = x̃(k)|xt = x(j)); k = 1, . . . , 2M ,
j = 1, . . . , N

• π is an uniform distribution

Because ỹt corresponds to the received static components x̃t,
it is expected to depend only on these, so that:

p(ỹt|xt) = p(ỹt|x̃t) (9)

The right side of (9) is either a Dirac pulse, when the channel is
error free, or an uniform distribution, when packets are lost. In a
circuit switched environment, it might also have another functional
form, depending on the individual bit error probabilities [8].

Now the forward-backward recursion can again be used to
compute the posterior p(xt = x(i)|Y), i = 1, . . . , N . From this,
the posterior of static components can be obtained by:

p(x̃t|Y) =

Z Z
p(xt|Y)dx̃′

tdx̃
′′

t . (10)

The means of the posterior densities of velocity and ac-
celeration are computed from the means of p(x̃t|Y), t =
1, . . . , T and the variances are computed assuming that
. . . , x̃t−1|Y, x̃t|Y, x̃t+1|Y, . . . are independent random vari-
ables, certainly a simplifying assumption [9].
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We also tried alternatively to obtain the distribution of dy-
ic components directly from the state distribution, similar to
, but the results were not encouraging, probably due to the
h quantization for delta and acceleration that we employed.

Integration in the recognition engine

lready explained in section 3.1.1, in the extreme cases of an
r-free channel and a channel allowing no information transmis-
at all, the posterior p(xt|Y) reduces to a Dirac pulse centered
e received yt or to the a priori density p(xt), respectively. For
extreme cases, as well for all intermediate channel conditions
pproximate the a posteriori density by a Gaussian density with

same time varying mean and variance as the original discrete
erior density.

While the validity of this assumption is certainly debatable, it
s an analytic computation of the integral (7) using the follow-

formula:

(x; μ1, σ
2
1) ·

N (x; μ2, σ
2
2)

N (x; μ3, σ2
3)

dx = C · N (μe; μ1, σ
2
1 + σ

2
e),

(11)
2 > σ2

2 . The parameters μe, σ2
e and the constant C are given

μe =
μ2σ

2
3 − μ3σ

2
2

σ2
3 − σ2

2

(12)

σ
2
e =

σ2
2σ2

3

σ2
3 − σ2

2

(13)

C =
N (0; μ2, σ

2
2)

N (0; μ3, σ2
3)N (0; μe, σ2

e)
(14)

Identifying N (x;μ1, σ
2
1) with the Gaussian densities of the

stic model p(xt|st), N (x; μ2, σ
2
2) with the a posteriori den-

of the sent vector and N (x; μ3, σ
2
3) with its a priori density,

educed the integration to computing the probability of observ-
he feature μe given an adapted acoustic model whose variance
creased by σ2

e . The extension to a Gaussian mixture model for

t|st) is straight forward.

4. Experimental results
section presents the results of the test we performed in order

valuate the improvement obtained by considering the a priori
, on one hand, and the modeling with extended state space
he other. We took the reconstruction based on nearest frame
tition (NFR) employed in [5] as a reference.

We simulated a packet-oriented transmission where each
et consisted of two feature vectors. The losses have been in-
d by a 2-states Markov chain [10], characterized by the con-
nal loss probability clp and mean loss probability mlp. The
f investigated conditions are summarized in the Table 2.

e 2: The conditional loss probability and mean loss probabil-
f the four simulated network conditions.

Condition C1 C2 C3 C4

clp 0.147 0.33 0.5 0.6

mlp 0.006 0.09 0.286 0.385
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Figure 2: Word Error Rates vs. channel condition.

The recognition task was the clean set of AURORA 2 database
consisting of 4004 utterances distributed over 4 subsets and the
acoustic models were those described in [11].

The ETSI advanced front-end for DSR [5] was employed for
feature extraction and quantization. The word error rate in the er-
ror free scenario was 0.86% for this setup. To build the Markov
model with extended state space, we quantized the dynamic com-
ponents of each feature subvector with 3 bits for delta and 1 bit for
acceleration.

Figure 2 shows the word error rates versus channel condition
for following error concealment schemes:

• NFR: the Nearest Frame Repetition scheme

• M: Marginalization of lost frames

• UD: Uncertainty Decoding, i.e. ignoring the a priori term
p(X) in (4) and source modeled as in section 3.1.2

• PRED: same as UD but employing the predictive decision
rule (4)

• PRED-X: predictive decision rule and extended source
model from section 3.1.3

If the loss bursts are relatively short (C2, C3), repetition per-
forms slightly better than marginalization. This is actually ex-
pected due to short term correlation, see Table 1. However if the
burst increases in duration, it is better to marginalize. Uncertainty
decoding (UD) performs better than NFR and M due to its capa-
bility to deemphasize the contribution of unreliable features. A
significant boost in accuracy is given by considering the a priori
term p(X) in Equation (4). The last curve shows another 20% rel-
ative gain over PRED which is obtained by the improved source
modeling.

Altogether it is a considerable reduction of WER by almost
50% relative to the baseline standard (NFR) in bad channel condi-
tions (C4).

5. Conclusions
In this paper the Bayesian framework of speech recognition was
reformulated for the server side of a distributed system. This
resulted in a predictive decision rule which was experimentally
proven to be more robust against channel errors than the existing
methods based on uncertainty decoding.
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By modeling the correlation among successive static and dy-
ic feature vector components, the residual inter-frame redun-
y, which is the only source of information to reconstruct the
frames, is more effectively exploited.
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