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Abstract

Frequency domain blind source separation (BSS) problems are
typically solved in each frequency bin independently and there-
fore require additional measures to resolve the resulting permu-
tation problem. In this paper, a frequency domain methodology
is presented based on a recently introduced extension of Inde-
pendent Component Analysis (ICA) to multi-variate components
which uses a multi-variate activation function to model dependen-
cies between frequency bins and therefore inherently manages to
align most of the permutations. Since the latter approach shows
slow convergence behaviour and is prone to converging to local
optima, additional geometric constraints are used here to force the
BSS algorithm to separate sources with a consistent direction of
arrival (DOA) over all frequencies into a minimum number of out-
put channels. DOA information is obtained from a priori knowl-
edge or from subband analysis of partially separated source sig-
nals. The methodology is illustrated in an undercomplete acoustic
source separation scenario with 3 speakers and 4 microphones.
Index Terms: blind separation, geometric constraints, local op-
tima, convergence 1. Introduction
Blind source separation (BSS) algorithms for convolutive mixtures
have experienced many developments in the past and both time
and frequency domain methods are available. Time domain algo-
rithms can achieve better separation performance [1] but end up
with more computations for the same filter length than equivalent
frequency domain nethods. Also, since in time domain algorithms,
every filter tap adaptation depends on all other taps, convergence
may be slow, prone to local minima and may therefore heavily de-
pend on good initalization [1].

To take advantage of the efficiency of performing long con-
volutions and rapid convergence of frequency domain based BSS
algorithms, several approaches have tried to minimize their short-
comings, most importantly the permutation problem [5, 6]. Permu-
tation can be remediated by time-frequency operations to enforce
filter smoothness properties and/or using explict look and null di-
rection steering constraints [6]. Finally direction of arrival (DOA)
information as well as neighboring frequency bin correlations and
speech harmonicity can be used to align frequency permutations
[4, 5].

Recently, a simple solution to the permutation problem has
emerged by using multivariate activation functions [2, 3]. While
the traditional ICA problem uses a uni-variate activation function,
a multi-variate activation function results from the assumption of
higher-order dependencies within source vectors as opposed to
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where mutual independence between source vector elements
assumed. The multi-variate activation function introduces an
icit dependency between individual filter weights during the
r learning process, thereby reducing the degrees of freedom
ing to random frequency permutation in conventional frequency
ain BSS. While most of the permutations can be realigned
is manner in theory, the procedure introduces some depen-
y on initial conditions similar to what has been observed in the
domain, resulting in slow convergence prone to local minima.

refore a regularization technique based on a priori known or it-
vely learned geometric information is proposed to overcome
ergence to local optima.

2. Independent Vector Analysis (IVA)
he frequency domain, complex ICA is concerned with find-
an unmixing matrix W(ω) for each frequency ω such that the
ixed outputs Y(ω, l) = W(ω) X(ω, l), where X(ω, l) =

(ω, l), · · · , XM (ω, l)]T (time window l, number of mixtures
is the DFT of time domain mixtures x(t), are mutually inde-
ent. The update rule for W(ω) is given by [2]

W(ω) = μ
[
I− < Φ(Y(ω, l) Y(ω, l)H >

]
W(ω) (1)

re Y(ω, l) = [Y1(ω, l), · · · , YM (ω, l)]T , <> denotes the
aging operator in time l = 1, · · · , L and μ is the learning rate.
traditional Infomax activation function is given by

j(ω, l)) = tanh(|Yj(ω, l)|)
Yj (ω,l)

|Yj (ω,l)|
which along with the

te rule (1), implies that the ICA problem is solved for each
uency bin independently, leading to the permutation problem
]. In [2], it was however shown that by assuming signals of in-
t have a certain dependency in the frequency domain that can
odeled by a multi-dimensional prior, the original dependent

ces can be extracted as a group using such a prior. As a result,
lti-variate activation function [2, 3]

Φ(Yj(ω, l)) =
Yj(ω, l)√∑
ω
|Yj(ω, l)|2

(2)

tained where the term in the denominator relates to the sep-
d source spectra power over all frequencies. It is noted the

ti-variate activation function used here is a special case of a
e general learning rule derived from general statistical distribu-
s [2]. Scaling ambiguity of W is resolved by a scaling matrix
gned with the minimum distortion principle [5].
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The use of a multi-variate activation function as in eq. (2)
avoids the permutation problem in theory by introducing an ex-
plicit dependency between individual frequency bin filter weights
during the filter learning process. Practically, this simultaneous
connected adaptation of filter weights introduces increased con-
vergence dependency on initial filter conditions similar to what has
been observed in time domain algorithms [1]. Therefore geometric
constraints are used here to overcome these practical limitations.

3. IVA with Linear Geometric Constraints
Geometric constraints can be used to constrain the spatial response
of a particular output channel to a particular orientation and plac-
ing null beams in others. This a common concept underlying lin-
early constrained adaptive beamforming, in particular GSC [7].
The idea put forward here is to add a regularization term to the IVA
cost function that supports its objective of focusing on a particu-
lar source direction by placing spatial nulls in interfering source
directions. The following regularization term is proposed

J(ω) = α(ω) ||W(ω) ∗ D(ω, θ̂) − C(ω)||2 (3)

where C(ω) =

⎡
⎣

c1(ω) 0 0 · · ·
0 c2(ω) 0 · · ·
0 0 · · ·

⎤
⎦ . The columns

of the directivity matrix D(ω, θ̂) are composed of the vectors dj

dj = exp
(
−i ∗ cos(θ̂j) ∗ pos ∗ ω/c

)
(4)

with pos = [p1 p2 · · · pM ]T being the sensor positions. The θ̂js
are source direction of arrival (DOA) estimates which are avail-
able either from a priori knowledge or need to be determined iter-
atively in the following manner. It has been shown previously [5]
that using the inverse of the unmixing matrix W, the DOA of the
separated outputs Yj can be estimated with

θj,mn(ω) = arc cos

c ∗ arg(
[W−1]

nj
(ω)

[W−1]
mj

(ω)
)

ω ∗ ||(pm − pn)||
(5)

where θj,mn(ω) is the DOA of source j relative to sensor pair m
and n, pm and pn the positions of mic m and n respectively and
c = 340m

s
the sound propagation velocity. When several mi-

crophone pairs are used, the DOA θ̂j for a specific IVA output Yj

can be computed by plotting a histogram of the θj,mn(ω) from eq.
(5) over all microphone pairs and frequencies in selected subbands
(see example, Figure 3 and 4). The average θ̂j is then the maxi-

mum or center of gravity
∑180

θj=0

N(θj )∗θj∑
180

θj=0
N(θj )

of the resulting his-

togram (θj ,N(θj)), where N(θj) is the number of DOA estimates
at angle θj . Reliable DOA estimates from such histograms may
only become available in later learning stages when average source
directions emerge after a number of iterations. The estimates in eq.
5 are based on a far field model valid for source distances from the
microphone array beyond (2 ∼ 4) ∗ D2/λ, with D the largest
array dimension and λ the shortest wavelength considered [7].

Objective (3) can be minimized by using the update rule

ΔWconstr(ω) �
dJ

dW (ω)

= μ ∗ α(ω) ∗ 2 ∗
(
W(ω) D(ω, θ) − C(ω)

)
D(ω, θ)H

(6)
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re α is a tuning parameter. When update eq. (6) is added to
update eq. (1) to determine the constrained IVA weight update
(ω), tuning α allows to suitably enforce the regularization

traint (3) depending on the spatial separability of the acoustic
ario and other considerations (see example).
If the number of sources R is equal to the number of mixtures
the choice of the desired beam pattern is set to
) = diag (W(ω) ∗ D(ω, θ)), thus nulling out sources from
fering orientations while preserving the beam strength into the
red orientation determined by the constrained IVA algorithm
ach iteration. If R < M , the kth row of W for which no

has been identified will require a corresponding row of zero
ies in C(ω), hence all sources are nulled out in this output
nel and only background noise remains. Alternatively, if R <
a dimension reduction can be performed first using PCA and
performing IVA on the reduced dimension subspace [5]. The
ced dimension constraint gradient reads

constr(ω) = μ ∗ α(ω) ∗ 2 ∗
(
W(ω) Wr(ω) D(ω, θ) − C(ω)

)

∗
(
Wr(ω) ∗ D(ω, θ)

)H
(7)

C(ω) = diag
(
W(ω) Wr(ω) D(ω, θ)

)
and where Wr

tes the R × M PCA dimension reduction matrix.
Since beamforming techniques are employed and speech is a
dband signal, it must be ensured that good performance is ob-
d for critical frequency ranges. If the far field model under-

g eq. (5) is invalid, near field corrections to the beam pattern
to be made [7]. Also the mic distance must be chosen small
gh (less than half the wavelength of the highest frequency) so

ial aliasing is avoided. In this case, it is not possible to enforce
p beams in the very low frequencies. Figure 1 summarizes the
osed scheme.

IVA Geometric
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re 1: Overview of proposed scheme based on IVA combined
geometric contraints to avoid local minima and speed up con-

ence: source direction of arrival information enforced via con-
nts can either come from a priori knowledge or be computed
tively on frequency subbands of partially separated sources
g the inverse of unmixing matrix W(ω).



4. Experiments
An example of an acoustic scenario in a reverberant room (3m ×
5m × 3m, T60 = 340 ms) is investigated (see Figure 2) where 4
omnidirectional microphones are used to separate 3 speakers play-
ing back prerecorded speech. A 20 second 4 channel recorded
mixture was acquired at 8 kHz sampling rate and processed through
20 sweeps with the IVA algorithm using learning rule (1) and acti-
vation function (2) with identity matrices for W(ω) as initial con-
ditions (filter length 256). After computing the frequency domain
filter taps W (ω), the equivalent time domain filters filters were
reconstructed using the IDFT and the mixture signals filtered to
obtain the separated source signals. Quantitative SIR results are
shown in Table 1 where SIR is defined as the ratio of the signal
power of the target signal to the signal power from the interfering
signals.

Source 1

Source 2

Source 3

4 cm

60 cm 

Microphone array

135
o

o
70

95
o

130 cm 

130 cm 
 1

2

3

4

Figure 2: Acoustic scenario with 3 speakers and 4 microphones

To compactly represent the DOAs obtained for each separated
IVA output with respect to closely spaced mic pairs (1,2),(2,3) and
(3,4), a histogram of DOAs computed for each separated IVA out-
put channel with formula (5) is plotted over all mic pairs and fre-
quencies in the [0 - 4 kHz] band as shown in Figure 3. It can be
seen that a defined DOA has become apparent for output channels
1 and 2 which correspond to sources 1 and 2 with respective DOA
of 70 and 95 degrees. However IVA outputs 3 and 4 do not exhibit
a clearly defined maximum when the whole available frequency
range of [0-4 kHz] is considered.
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Figure 3: Histogram of estimated DOAs with eq. (5) for mic pairs
(1,2), (2,3) and (3,4) over all frequencies in [0-4kHz] band for
each IVA separated output using learning rule (1) and activation
function (2): IVA outputs 1 and 2 correspond to sources 1 and 2
respectively while no defined DOA is perceived in outputs 3 and 4

After splitting the histogram into low ([0-2.3kHz], left plot in
Figure 4) and high frequency ([2.3-4 kHz], right plot in Figure 4)
components, it can be seen that there exists a third source with
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re 4: Decomposition of DOA histogram in Figure 3 into low
uency ([0-2.3kHz], left plot) and high frequency ([2.3-4kHz],
t plot) bands: output channels 1 and 2 show consistent DOAs
nd 75 and 95 degrees in both bands while a DOA in the range
20-140] degrees is apparent in the low frequency band of IVA
ut channel 4 (left plot) and in the high frequency band of out-
channel 3 (right plot). The unconstrained IVA has thus sepa-
d a continuous high frequency band of source 3 (135 degrees)
output channel 3 while its low frequency band is separated
output channel 4, therefore converging to a local minimum

OA around 135 degrees but that the respective high and low
uencies have been aligned in non permuted bands in different
ut channels (Figure 4). The unconstrained IVA algorithm has
converged to a local optimum.

From the histograms in Figure 4, three distinct DOAs of 76,
nd 134 degrees were determined by combining the average
es of the histograms’ center of gravity (see section 3) in each
output in the low and high frequencies bands. These values

e used as DOA setpoints in update eq. (6) and the constrained
rithm (update eq. (6) added to (1) with activation function (2))
rted in the local optimum. Figure 6 and Table 1 illustrate the
rent effects of choosing parameter α which allows to trade

the regularization constraint against the IVA objective. One
of interpreting the different schemes is to look at the spatial

patterns of the separated outputs Yj by plotting the quan-
|W (ω) ∗ d(θ, ω)| (d defined as in eq. 4) over all angles θ for
row of the unmixing matrix W. As illustrated for all 3 output
patterns at frequency 2 kHz in Figure 6, aggressive enforce-

t of constraints (3) yields unnecessary deep nulls at specified
rfering DOAs leading to significantly worse performance (Ta-
, conIVA(α=2) ) than the one observed in the IVA local mini-
(Table 1, IVA). Using a smaller α allows to improve the SIR

separated source 3 substantially (conIVA, α=0.1). The best
all performance is however obtained when the unconstrained
algorithm using eq. (1) and (2) is restarted (Table 1, IVAopt)
initial filter values given by the final solution obtained with

constrained IVA using α = 0.1. Figure 5 shows the final his-
ams for the optimal case (IVAopt) with the DOA of source 3
rly visible in IVA output channel 3 and no directional infor-
ion apparent in IVA output channel 4. Also, as can be seen in
re 6, the optimal solution (IVAopt) trades off the depth and ex-
ositioning of the null beams against each other and therefore
rs in fine tuning from the constrained IVA solution obtained
α=0.1. This suggests it is advisable to use the geometric con-

nts to initialize the IVA algorithm in a region close to the op-
m using a priori knowledge or to guide it into such a region
small α using iteratively estimated DOAs. Since the latter
can never be determined accurately, especially in reverber-

environments, small αs are advised throughout the learning
ess when no a priori spatial information is available.
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Figure 5: Histogram of DOA estimates from eq. (5) over all mic
pairs and frequencies corresponding to IVA umixing solution (up-
date rule (1), activation function(2) ) initialized at converged solu-
tion of constrained IVA (update eqs. (1) and (6), α=0.1)(see text):
as opposed to Figure 3, IVA output 3 clearly emerges as source 3

Since we are dealing with an undercomplete scenario, an al-
ternative route is to apply IVA where a PCA dimension reduction
from a 4 dimensional to a 3 dimensional space is applied first fol-
lowed by IVA using update eqs. (1), (7) and function (2) on the
reduced 3 dimensional mixture. Although the constraints were not
applied towards the end of the convergence in this case, the over-
all performance using PCA first (Table 1, PCA-IVA) is inferior to
the one observed in the full dimensional case (IVAopt). Thus, by
using the regularization term (3), one can force the IVA algorithm
to separate all point sources into a minimum of output channels
and does not require a dimension reduction first. More degrees of
freedom are preserved for the separation in this way through di-
rect use of 4 mic measurements instead of a PCA selected reduced
measurement space not necessarily optimal for overall signal sepa-
ration. By constraining the separated solutions into designated out-
put channels, some channel selection capability is also provided.

SIR (dB) Source 1 Source 2 Source 3
Recording -4.72 -9.26 -7.02

IVA 18.98 10.10 5.35
conIVA (α=2) 2.13 -3.78 2.63

conIVA (α=0.1) 16.39 10.04 12.76
IVAopt 19.85 10.73 12.97

PCA-IVA 15.29 9.45 13.15

Table 1: SIR results for different separation algorithms: IVA = IVA
with update rule (1) using function (2); conIVA=constrained IVA
using update rule composed of (1) added to (6) for different set-
tings of α; IVAopt= IVA initialized at final solution obtained with
conIVA(α=0.1); PCA-IVA=constrained IVA using update rule (1)
added to (7) on reduced 3 dimensional PCA subspace

5. Conclusions
A frequency domain, permutation-free source separation scheme
was proposed based on a combination of an independent compo-
nent vector analysis algorithm and geometric constraints. Using
a priori or iteratively computed DOA information, convergence
speed of the BSS algorithm can be enhanced and local optima
avoided. Moreover no PCA type dimension reduction is required
in undercomplete mixing scenarios as geometric constraints can
force source signals into a minimum number of output channels.
The limitation of this approach is that a large number of mics may
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re 6: Illustration of separated output beam patterns |W∗d(θ)|
ined using constrained IVA (update rule (1) added to eq. (6)
activation function (2) ) at ω=2 kHz: Null beams are placed

OA 76, 96, 134 degrees and different aggressiveness of con-
nt enforcement using α (eq. 6) allows to adjust the depth of
lting null beams (dashed line for α = 2; dashed-dotted line for
.1). The solid line corresponds to the optimum solution of un-
trained IVA (update rule (1) with function (2) ) initialized with
erged filters obtained from constrained IVA using α = 0.1

equired to allow sufficient spatial resolution of geometric con-
nts when sources are located close to each other.
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