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Abstract

A novel approach for automatic speech recognition in highly re-

verberant environments, proposed in [1] for isolated word recog-

nition, is extended to continuous speech recognition (CSR) in this

paper. The approach is based on a combined acoustic model con-

sisting of a network of clean speech HMMs and a reverberation

model. Because the grammatical information and the information

about the acoustic environment are strictly separated in the com-

bined model, a high degree of flexibility for adapting the system

to new tasks and new environments is attained. We show that vir-

tually all known CSR search algorithms can be used for decoding

the proposed combined model if a few extensions are added. In

a simulation of a connected digit recognition task, the proposed

method achieves more than 40 % reduction of the word error rate

compared to a conventional HMM-based system trained on rever-

berant speech, at the cost of an increased decoding complexity.

Index Terms: robust speech recognition, distant-talking speech

recognition, dereverberation.

1. Introduction

Automatic speech recognition (ASR) is the key to numerous appli-

cations like natural human-machine interfaces, dictation systems,

electronic translators and automatic information desks. To further

increase the acceptance of these applications, it is desirable that the

user can move freely while communicating to the system without

the need of wearing a close-talking microphone.

Since the distance between speaker and microphone in such

a distant-talking scenario usually is in the range of one to sev-

eral meters, unwanted additive signals and reverberation of the de-

sired signal hamper ASR. In this paper, we focus on reverberation-

robust ASR.

The most straightforward approach of obtaining an ASR sys-

tem capable of working in reverberant environments is to train a

conventional HMM-based recognizer using data recorded in the

enclosure where the recognizer will be deployed. To reduce the

enormous effort implied in collecting a complete set of training

data for each new environment of operation, artificial reverbera-

tion of clean training data has been suggested [2, 3] and has been

shown to yield a noticeable improvement.

While the usual model adaptation techniques, which have been

successfully applied in noisy environments, are not suitable for re-

verberation times significantly exceeding the frame length of the

recognizer, Raut et al. [4] suggest a model adaptation approach for

long reverberation. Here, the linear means of a split-state HMM
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djusted taking into account the linear means of the preceding

s. Thus, the recognition rate is significantly improved with

a few adaptation data. However, both reverberant training and

el adaptation techniques suffer from the underlying assump-

of any HMM-based system, namely that the current output

or depends only on the current state. This assumption prevents

entional HMMs from appropriately modeling reverberation.

In this paper, we extend the novel approach for robust speech

gnition in reverberant environments introduced in [1] to con-

ous speech recognition. The dependence of the current feature

or on previous vectors is implicitly accounted for in this ap-

ch by a combined acoustic model consisting of a network of

entional HMMs, modeling the clean speech, and a reverbera-

model. Since the HMM network is independent of the acous-

nvironment, it needs to be trained only once using the usual

m-Welch re-estimation procedure. The training of the rever-

tion model is based on a set of room impulse responses for the

esponding acoustic environment and involves only a negligible

putational effort. In this way, the recognizer can be adapted to

environments with moderate effort.

The paper is organized as follows: In Section 2, the novel ap-

ch is explained in detail. Simulations of a connected digit

gnition task, described in Section 3, show the effectiveness of

new recognizer. In Section 4, the paper is summarized and

lusions are drawn.

2. The proposed approach

combined acoustic model is introduced from the perspective

ature production and its novel part, namely the reverberation

el, is described in detail. We show that virtually all known

search algorithms can be used for decoding the combined

stic model if the calculation of the feature vector output prob-

ities is adapted accordingly.

Feature production model

assume that the sequence X of reverberant speech feature vec-

x(n) is produced by a combined acoustic model. The com-

d model consists of a network Nλ of word-level HMMs λp

ribing the clean speech and a reverberation model η as illus-

d in Figure 1. The word-level HMMs λp may be composed of

ord HMMs. The task grammar and the language model can

mbedded into the network of HMMs to reflect the recogni-

task. In contrast to that, the reverberation model is completely

pendent of the recognition task. The strict separation of the

matical information incorporated into the network of HMMs

September 17-21, Pittsburgh, Pennsylvania
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Figure 1: Proposed feature production model.
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Figure 2: Calculation of melspec coefficients.

and the information about the acoustic environment reflected by

the reverberation model yields a high degree of flexibility when the

recognition system has to be adapted to new tasks or new acoustic

environments. By selecting an appropriate reverberation model,

the combined model can be used in moderately to highly reverber-

ant environments and also with non-reverberant speech.

The combined acoustic model for the production of reverber-

ant feature vectors can be applied to any kind of speech features

which allow the formulation of an appropriate relation between

the sequence S of output feature vectors s(n) of the clean speech

model, the sequence H of the reverberation model output matrices

H(n) (see 2.2) and the sequence X of reverberant speech feature

vectors x(n).

In this paper, we are using mel-frequency spectral (melspec)

coefficients as illustrated in Figure 2 as features. Thus, the rever-

berant sequence X can be approximated by the convolution of the

clean sequence S and the sequence H of realizations of the rever-

beration model

x(n) =

M−1∑
m=0

h(m, n) � s(n − m) ∀ n = 1 . . . N + M − 1 . (1)

Here, � denotes element-wise multiplication, s(n) and x(n) are

single feature vectors at frame index n of clean and reverberant

speech, respectively, the vector h(m, n) is a realization of the re-

verberation model for frame delay m and frame index n, while

M and N are the lengths of the reverberation model and the clean

utterance, respectively.

Note that the proposed combined model can be considered as

a generalization of the HMM decomposition approach [5] for a

convolutive combination of the models employing a different way

of evaluating the output density of the combined model.

2.2. Reverberation model

The reverberation model η represents an independent identically

distributed (iid) matrix-valued random process. Each column of

the matrix corresponds to a certain delay m (in multiples of the

frame shift) and each row of the matrix corresponds to a certain

mel channel l. The sequence H of reverberation feature matrices

H(n) is a realization of this random process as illustrated in Fig-

ure 3. For simplification, each element of the matrix is assumed

to be statistically independent from all other elements and is mod-

eled by a Gaussian density. Furthermore, the iid property of the

random process implies that all elements of the random process at

frame index n1 are statistically independent from all elements of

the random process at frame index n2 as long as n1 �= n2.
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h(l = 1, m = 0, n = 1)
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Figure 3: Realization H of the reverberation model η.

The starting point for the training of the reverberation model is

t of room impulse responses (RIRs) for different microphone

loudspeaker positions of the room where the ASR system will

pplied. These RIRs can either be measured before using the

gnizer, estimated by blind system identification approaches or

eled, e. g., using the image method as described in [6]. To

the reverberation model, the RIRs are time-aligned so that the

ct path of all RIRs appears at the same delay. Calculation of

elspec representation yields a matrix of melspec coefficients

ach impulse response. Using these coefficients, the means and

ariances of all matrix elements of η are estimated.

Decoding

ar, we introduced a novel feature production model, describ-

ow reverberant speech features are generated given the model.

speech recognition however, the opposite task has to be solved.

n a reverberant utterance, a recognition network of clean

ch HMMs and a reverberation model, the recognizer has to

the path through the network yielding the highest probability

he utterance in connection with the reverberation model.

Independently of the acoustic-phonetic modeling, the continu-

speech recognition search problem can be formulated as find-

the word sequence Ŵ maximizing the product of the language

el score L(W ) associated with word sequence W and the

stic model score A(X|W ) of X given W

Ŵ = argmax
W

{L(W ) · A(X|W )} . (2)

nventional HMMs are used for the acoustic-phonetic model-

the acoustic score can be expressed as the following maximum

ihood problem

A(X|W ) = max
Q

{P (X, Q|Λ)} ,

re the maximization is performed over all allowed state se-

ces Q through the sequence Λ of HMMs describing W .

For the combined acoustic model consisting of a clean speech

M network and the reverberation model, the acoustic score is

n as

(X|W ) = max
Q,S,H

{P (Q,S,H|Λ, η)} s. t. (1)

= max
Q

{
P (Q|Λ) · max

S,H
{P (S,H|Λ, η, Q)}

}

subject to (s. t.) the constraint (1) .

A large number of algorithms exists for solving the search

lem (2) if HMMs are used for the acoustic modeling, see [7]



and [8] for overviews. As only the calculation of the acoustic score

is different in the proposed approach, virtually all these algorithms

can be used for decoding the combined model if a few extensions

are added. These extensions will be derived in the following.

In the proposed approach, the acoustic score A(X|W ) is cal-

culated iteratively by an extended version of the Viterbi algorithm

γj(n) = max
i

{γi(n − 1) · aij · Oij(n)},

∀j = 1 . . . I, n = 2 . . . N + M − 1,

Oij(n) = max
sij(n),Hij(n)

{ fΛ(j, sij(n)) · fη(Hij(n))} (3)

s. t. x(n) =

M−1∑
m=0

hij(m, n) � sij(n − m) , (4)

A(X|W ) = γI(N + M − 1) .

Here, γj(n) is the Viterbi metric for state j at frame n, aij is

the transition probability from state i to state j, fΛ(j, sij(n)) and

fη(Hij(n)) are the output densities of the HMM sequence Λ de-

scribing W and the reverberation model η, respectively, I is the

number of states in Λ. The subscript ij in sij(n) and Hij(n) indi-

cates that these vectors/matrices are based on the optimum partial

state sequence Q̂ij(n) from frame n − M + 1 to frame n with

current state j and previous state i.

The extension compared to the conventional Viterbi algorithm

consists of the inner optimization of equation (3). Introducing a

simplified notation which neglects the dependency on the frame

index n and the sequence Q̂ij(n) by the following mappings

sij(n − m) → sm, x(n) → x, hij(m, n) → hm, the constraint

(4) can be written as

x = h0 � s0 +

M−1∑
m=1

hm � sm ,

where the underlined vectors are unknowns following a Gaus-

sian distribution with diagonal covariance matrix and the

overlined vectors are known from previous steps of the algorithm.

Now we approximate the generally non-Gaussian random vec-

tor x̃0 = h0 � s0 resulting from the element-wise product of the

two Gaussian random vectors h0 and s0 by a Gaussian random

vector x0 with the same mean and variance as x̃0. Thus we can

rewrite the constraint as

x = x0 +

M−1∑
m=1

hm � sm . (5)

A two-step closed-form solution of the constrained problem

(3) s. t. (4) can be derived in the following way.

First step: Find x0 and hm′ .

Applying the method of Lagrange multipliers to

max
x0,h1,...,hM−1

{ fx0
(x0) · fη(h1) · . . . · fη(hM−1)} s. t. (5) ,

where fx0
(x0) is the probability density of x0 and assuming that

all involved densities are single Gaussians, we obtain the following

solutions for x0 and hm′

x0 =

∑ M−1

m=1
s
2

m � σ2

hm

σ2
x0

+
∑ M−1

m=1
s2m � σ2

hm

� mx0

+
σ2

x0

σ2
x0

+
∑ M−1

m=1
s2m � σ2

hm

�
(
x −

M−1∑
m=1

sm � mhm

)

hm′

whe

squa

σ2
hm

and
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σ2

x0
+

∑ M−1

m=1

m �=m′

s
2

m � σ2

hm

σ2
x0

+
∑ M−1

m=1
s2m � σ2

hm

� mh
m′

+
s
2

m′�σ2

h
m′

σ2
x0

+
∑ M−1

m=1
s2m�σ2

hm

�
1

sm′
�

(
x−mx0

−

M−1∑
m=1

m �=m′

sm�mhm

)

re the squaring and the division operation denote element-wise

ring and element-wise division, respectively, and mhm and

denote the mean and the variance vector of hm, respectively,

likewise for the other variables.

nd step: Find h0 and s0 given x0.

lying the method of Lagrange multipliers to

max
s0,h0

{ fΛ(j, s0) · fη(h0)} s. t. x0 = h0 � s0

assuming that fΛ(j, s0) and fη(h0) are single Gaussians, we

in the following fourth-order equation to be fulfilled by the

red vector h0

0
�h

4
0−mh0

�σ2
s0

�h
3
0+ms0�σ2

h0
�x0�h0−x

2
0�σ2

h0
=0 ,

re the exponents denote element-wise powers. It can be

n, that this equation has a pair of complex conjugate solu-

s, one real-valued positive and one real-valued negative solu-

. As only the real-valued positive solution achieves the max-

ation of the desired probability, we obtain exactly one vector

nd thus exactly one vector s0.

Note that for this two-step solution of the inner optimization

lem, the vectors sij(n − m) ∀ m = 1 . . . M − 1 need to

tored for all possible previous states i and all possible current

s j in the HMM sequence Λ. This can be implemented effec-

y by storing all speech vectors s(n − m|q(n − m) = k) for

ossible states k in Λ. Then sij(n − m) can be reconstructed

g the optimum partial state sequence Q̂ij(n). Therefore, the

search algorithm needs to perform state-level backtracking so

Q̂ij(n) is available.

With these extensions, the known CSR search algorithms can

sed for decoding the proposed combined model.

3. Simulations

nalyze the effectiveness of the proposed approach, simulations

connected digit recognition task using melspec features are

ied out. The performance of the proposed approach is com-

d to that of conventional HMM-based recognizers (using the

e melspec features) trained on clean and reverberant speech,

ectively.

Experimental setup

proposed approach is implemented by extending the function-

of HTK [9] with the inner optimization as described above.

the evaluation of the proposed approach, a connected digit

gnition task is chosen, since this can be considered as one of

asiest examples of continuous speech recognition.

The used feature vectors are calculated in the following way:

speech signal, sampled at 20 kHz, is decomposed into overlap-

frames of length 25 ms with a frame shift of 10 ms. After ap-

ng a 1st-order pre-emphasis (coefficient 0.97) and a Hamming

ow, a 512-point DFT is computed. From the DFT represen-

n, 24 melspec coefficients are calculated. Only static features

no Δ and ΔΔ coefficients are used.

The training is performed using 4579 connected digit utter-

s corresponding to 1.5 hours of speech from the TI digits [10]



training data. For the training with reverberant speech, the clean

data are convolved with measured room impulse responses from

two different rooms. Room A is a lab environment with a re-

verberation time of T60 = 300 ms and a signal-to-reverberation

ratio of SRR = 4 dB. Room B is a studio environment with

T60 = 700 ms and SRR = −4 dB.

A 16-state left-to-right model without skips over states is

trained for each of the 11 digits (’0’-’9’ and ’oh’). Additionally,

a three-state silence model with a backward skip from state 3 to

state 1 is trained. The output densities are single Gaussians with

diagonal covariance matrices. All HMMs are trained according

to the following procedure: First, single Gaussian MFCC-based

HMMs are trained by 10 iterations of Baum-Welch re-estimation.

Then the melspec HMMs are obtained from the MFCC HMMs by

single pass retraining [11]. In this way, more reliable models are

obtained than by training melspec models from scratch. For the

conventional HMM-based clean recognizer and for the proposed

approach, identical HMM networks are used. The HMM network

of the conventional reverberant recognizer differs only with respect

to the training data. Two distinct sets of reverberant HMMs are

trained for room A and room B using data reverberated with RIRs

measured in the corresponding rooms.

We use HMMs with single Gaussian densities for the proposed

approach, as the solution to the inner optimization problem de-

scribed above is only valid for single Gaussians. To get an equal

comparison, single Gaussian HMMs are also used for the conven-

tional approaches.

For the recognition, a silence model is added in the beginning

and at the end of the HMM network consisting of an 11-digit loop.

As test data, 512 test utterances randomly selected from the TI

digits test set are used. To obtain the reverberant feature sequences,

the clean test signals are convolved with room impulse responses

from room A and room B, respectively, before they are passed to

the feature extraction unit.

To train the reverberation model ηA/ηB for room A/B with

length MA = 20/MB = 50, 36/18 impulse responses measured

in room A/B with different loudspeaker and microphone positions

with constant distance of 2.00 m/4.12 m are used. For the artificial

reverberation of training data and for the training of the reverber-

ation models, RIRs different from the impulse responses used to

generate the test data (measured in the same room but at different

microphone positions) are used in order to maintain a strict sepa-

ration of training and test data.

3.2. Experimental results

Table 1 compares the word error rates (WER) of the conventional

HMM-based recognizers to that of the proposed approach for the

connected digit recognition task described above. While the WER

increase in room A compared to clean speech is about 30 % and

about 15 % for the conventional systems trained on clean and re-

verberant speech, respectively, the error rate of the proposed ap-

proach only increases by less than 5 %. In the more reverberant

room B, the benefit of the proposed approach is even greater with

a WER increase of about 9 % compared to about 70 % and 27 %

of the conventional systems. These results confirm that the pro-

posed approach achieves much better recognition performance in

reverberant environments than conventional ASR systems, even if

the latter are trained on reverberant data. However, the decoding

complexity increases by a multiplicative factor which is propor-

tional to the length M of the reverberation model. In our current

implementation, this factor is in the range of one thousand.
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st conventional conventional proposed
clean training rev. training

ean data 17.98 % - -

v. data - room A 48.50 % 33.17 % 22.39 %

v. data - room B 87.08 % 45.14 % 26.36 %

e 1: Comparison of word error rates of a conventional HMM-

d recognizer and of the proposed algorithm.

4. Summary and conclusions

ovel approach for continuous speech recognition in reverber-

environments has been presented. The method uses a com-

tion of an HMM network and a reverberation model to de-

e the reverberant speech feature sequences. As the HMM net-

k modeling the clean speech is identical to the networks used

nventional CSR, virtually all search algorithms developed for

entional CSR can be used for decoding the combined acous-

odels. The search algorithms only need to be extended by

nner optimization procedure accounting for the reverberation

el. The limitations of this concept are the increased compu-

nal complexity and the memory requirements for this inner

mization. Simulations of a connected digit recognition task

shown a considerably better performance of the proposed ap-

ch compared to conventional HMM-based recognizers, even

e latter are trained on reverberant speech. Future work will

s on implementing the proposed method for more powerful

ch features, like mel-frequency cepstral coefficients, and on

g mixtures of Gaussians as well as on reducing the computa-

al complexity.
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