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Abstract
This paper presents a novel algorithm for semantic decoding

in spoken language understanding systems. Unlike conventional
semantic parsers which either use hand-crafted rules or statisti-
cal models trained from fully annotated data, the proposed ap-
proach uses an unsupervised sentence clustering technique called
Y-clustering to automatically select a set of exemplar sentences
from a training corpus. These exemplars are combined with sim-
ple sentence-level semantic annotations to form templates which
are then used for semantic decoding. The performance of this ap-
proach was evaluated in the travel domain using the ATIS corpus.
Training is fast and cheap, and the results are significantly better
than those achieved using HMM-based or stack-based statistical
parsers.

Index Terms: semantic parsing, language understanding, sentence
clustering, spoken dialogue system.

1. Introduction
Spoken dialogue systems require robust decoders to extract the
required semantic information from the automatically recognised
user inputs. Existing approaches to semantic decoding are ei-
ther rule-based or statistical. Rule-based systems typically require
hand-crafted rules which might then be augmented with corpus
statistics (e.g. MIT’s TINA [1], CMU’s PHOENIX [2], and SRI’s
Gemini [3] systems). Whilst good performance is often achieved
using this approach, rule-based parsers are normally expensive to
build and hard to transplant from one application to another. Fur-
thermore, they can still degrade badly in the face of high speech
recognition error rates and unexpected or ill-formed input sen-
tences.

In contrast, the statistical approach seeks to automatically
train parsers from semantically annotated sentences in the hope of
building more robust decoders with less effort. An early example
is AT&T’s finite state semantic tagger in which a HMM is used to
assign semantic concepts to words [4]. More sophisticated mod-
els have been proposed since that can handle hierarchical structure
such as the hierarchical Hidden Understanding Model [5], the hi-
erarchical Hidden Markov Model [6] and the Hidden Vector State
(HVS) model [7]. However, these models are complex and typi-
cally require every training utterance to be semantically annotated.

In some sense, both the rule-based and the statistical ap-
proaches mentioned above treat semantic decoding as a classical
parsing problem. An alternative would be to treat the problem as a
straightforward pattern recognition problem in which all sentences
which share the same semantic annotation are deemed to be mem-
bers of the same class. However, if sentences were classed accord-
ing to their semantics, this would still require all training sentences
to be semantically annotated. Our experience in building statistical
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oders suggests that several thousand such sentences are needed
uild a robust decoder and the provision of this data is time-
suming and often prohibitive.
This paper describes a simple and straightforward approach to
st semantic decoding which is fully automatic and which re-
es relatively few training sentences to be annotated, and only
he sentence level. Furthermore, the approach works surpris-
y well, outperforming our best statistical parser on the ATIS
us. The key idea is to first cluster sentences into classes with-

knowledge of their semantics and then assign a single semantic
otation to each class. To decode, the unknown input sentence
ssigned the semantics associated with the class (or classes) to
ch it most closely matches.
The remainder of the paper is organised as follows. The
ence clustering algorithm, which we call Y-clustering, is de-
bed next in section 2 and a semantic decoder based on Y-
tering is described in section 3. Section 4 then presents exper-
ntal results using the ATIS corpus. Finally, section 5 presents
conclusions.

2. Y-Clustering
A General Schema for Sentence Clustering

en a set of N training sentences {S1, . . . , SN}, the Y-
tering algorithm seeks to group the sentences into Y classes
then select one sentence from each class to serve as an exem-
. Each such exemplar is called a template. The basic process is
ilar to the familiar K-means clustering algorithm which in the
text of sentences can be described as follows:

1. (Initialisation): Randomly select Y different sentences as
the initial templates {T1, T2, · · · , TY }.

2. (Clustering): Assign each training sentence {Si} to the
class m∗ with the most similar template, i.e.

m∗ =
argmax

m
{d(Si, Tm)} for m = 1, · · · , Y. (1)

where d(S, T ) is a similarity measure between sentence S
and template T .

3. (Template regeneration): For each class, select the sentence
ST which yields the highest within-class similarityD as the
template T for that class:

ST =
argmax

Si
{D(Si)} for i = 1, · · · , H. (2)

where D(S) is the total similarity between sentence S and
all members of the class, i.e.

D(S) =
HX

h=1

d(S, Sh) (3)

and where H is the number of sentences assigned to that
class.
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4. Return to Step 2 until the termination criteria is satisfied.
For example, similar to K-means, the process can be termi-
nated when the newly regenerated templates are identical to
those generated in the previous iteration.

The two key issues which arise in converting the above to a practi-
cal algorithm are the choice of distance metric and the method of
controlling the generation of classes. These are dealt with next.

2.2. Similarity and Saliency

The similarity between two sentences will clearly depend on the
words within them. To ensure that key informational bearing
words such as content words are weighted more heavily than the
less relevant words such as function words, every word is assigned
a saliency. The saliency of a word will then represent how impor-
tant the word is in distinguishing the current class from the other
classes.

Assume that there are H sentences in a class, and α sentences
in that class contain the word w. Additionally, assume that there
are M classes, and among them β classes contain the word w.
Then the saliency of w in that class is defined as

I(w) =

r
α

H
× (1 − β

M
). (4)

This is a form of mutual information between the within class fre-
quency and inter-class frequency, and it ranges from 0 to 1. A word
with high saliency in a class will occur frequently in that class and
it will be rare in all of the other classes.

Given a definition for the saliency of a word, a distance met-
ric between a sentence S and a template T can be defined as fol-
lows. Firstly, a DTW algorithm is used to align S against T . When
two identical words are aligned they receive a score equal to their
saliency, and in all other cases the score is zero. Thus, no penalty
is applied for mismatched words or for insertions and deletions
and the overall alignment is chosen so as to maximise the total
score. Given this DTW alignment, assume that there are L words
in the sentence S, K words in the template T with saliency Ii for
i = 1, · · · , K, and J words, w1, w2, · · · , wJ of S were aligned
to the template, then the similarity between the sentence S and the
template T is given by:

d(S,T ) =

vuut J

L
×

PJ
j=1 I(wj)PK

i=1 Ii

. (5)

Again, this is a mutual information style of definition which bal-
ances the degree of similarity as viewed from the perspective of
the sentence (the first term in equation (5)) and the template (the
second term in equation (5)). Its use avoids assigning high simi-
larity to cases of unbalanced matching, e.g. where a long sentence
matches a short template or vice versa, and it ensures that similar-
ities always fall in the range 0 to 1.

2.3. Controlling the generation of classes

The Y-clustering algorithm is based on the K-means style cluster-
ing outlined in section 2.1 and the distance metric defined above in
equation (5). However, conventional K-means clustering does not
necessarily lead to the best sentence classes in terms of sentence
similarity. In fact, if the number of classes is fixed in advance,
then two undesirable consequences result. Firstly, sentences will
be assigned to the nearest class during training regardless of their
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in class similarity i.e. the within class similarity is not con-
lable. Secondly, similar classes can be generated, i.e. the inter-
s similarity is not controllable. This often happens when the
ber of classes to train is larger than the number of underlying
ses. Hence it is necessary to perform sentence clustering in a
e controlled way.

The problem can be simplified by viewing every sentence as a
t in two dimensional space. The problem now becomes how

se a number of circles with the same radius p to cover all these
ts so that every point must be inside a circle. Additionally,
conditions must be met: 1) circles can only be located with
centre at an existing point; 2) the number of circles should
inimised to reduce overlapping. Returning now to the actual
lem of sentence clustering, the circles are the sentence classes,

centre of the circle is the template, and the radius of the circle
the maximal allowed distance within a class, i.e. the similar-

threshold. The Y-clustering algorithm attempts to satisfy the
ve requirements by generating sentence classes in stages. The
ber of classes that can be generated at each stage is controlled
similarity threshold p. In each stage, the algorithm evaluates

number of out-of-class (OOC) sentences/points to check that
coverage of the generated classes/circles is increasing, and it
tinues iteratively searching and merging similar classes until
erage starts decreasing. In the following stage, the process is
ated but just using the OOC sentences/points remaining from
preceding stage. This continues until all of the training data
e been allocated to classes within the threshold p.

Since there are often some out-of-domain sentences in the
ing set, some of the generated classes will have very few mem-
(very likely just one sentence in a class). Hence on completion
e Y-clustering algorithm, all generated templates are collected
rm a single set and all of the training sentences are re-assigned

he nearest template. The number of sentences in each class is
used to rank the templates. Finally, the desired number of

plates Y can be selected as the top Y entries in the ranked list,
eby pruning all of the out-of-domain classes at the bottom of
list.

The Y-clustering Algorithm

Y-clustering algorithm is as follows:

1. Assign a value to a similarity threshold p ranging from 0 to
1 (e.g. p = 0.7), and set the maximum number of templates
to generate in each pass M (e.g. M = 500).

2. Tag all training sentences as OOC and select the first M
distinct sentences in the corpus to form the initial set of
templates. Set all word saliencies to 1.

3. For each training sentence S, select each template T in turn
and compute the similarity d(S,T ) using equation (5). If
the similarity is higher than p, assign S to template class
T and go to the next sentence; otherwise if the similarity
is less than p for all templates, assign the sentence to the
class with highest similarity score and mark the sentence as
OOC.

4. After assigning all sentences, sort the templates into order
based on the number of sentences in each template class,
then delete the empty classes. This improves efficiency
in subsequent iterations and encourages merging of similar
classes by ensuring that templates with the most members
are always examined first.



5. If the number of OOC sentences is fewer than in the pre-
vious iteration, then update the word saliencies using equa-
tion (4), regenerate the templates as in step 3 of section 2.1,
and return to Step 3.

6. Store the set of templates generated in the previous steps,
and set aside all of the sentences which are not marked as
OOC. Then repeat from step 2 until all of the data has been
used.

7. Finally, collect together all of the generated templates and
assign each training sentence to the nearest template. Rank
the templates according to the number of assigned sen-
tences. If there are more than the required Y templates in
the ranked list, discard all but the top Y entries.

This algorithm guarantees that the sentence similarities in every
classes are above the similarity threshold. The number of final
classes in the ranked list depends on the threshold p and the distri-
bution in the training corpus.

3. Semantic decoding using Y-clustering
The target application area for the type of semantic decoding being
described in this paper is limited domain spoken dialog systems.
These systems are typically concerned with so-called slot-filling
dialogues where the application is characterised by a set of lex-
ical classes (i.e. slots) such as city name, day, ticket class,
etc. and extracting the semantics of an utterance primarily involves
identifying the slot names and their values1. Thus, for example, the
sentence

Show me flights from London to Paris

would have semantics defined by two slot value pairs

Slots/Values: FROMLOC.CITY = London
TOLOC.CITY = Paris

To use the Y-clustering approach for semantic decoding, the
following steps are performed. Firstly before clustering, each sen-
tence in the corpus is pre-processed such that any lexical class
members are replaced by their class names. The sentences are
then clustered to generate a set of templates. Each template then
has the associated slot/values attached where the values reference
the position of the corresponding word in the utterance. Thus, if
the above sentence was a template, it would be stored as:

Show me flights from city_name to city_name
Slots/Values: FROMLOC.CITY = T(5)

TOLOC.CITY = T(7)

Decoding a sentence then consists of matching it against ev-
ery template using the same DTW alignment procedure used in
training. For every template whose similarity lies above a thresh-
old, the corresponding slot/value pairs are instantiated along with
the similarity score itself. Thus, more than one template can con-
tribute to the set of slot/value pairs extracted from an utterance.
This allows new forms of sentence to be processed by partially
matching against different templates. Where there is competition,
the rule used is that each word in the sentence can only appear
in one slot/value pair and if a word matches more than one slot,
then the match with the highest similarity score is selected. How-
ever, the same slot can be used multiple times when it is bound to
different words.

1The intended dialog act also needs to be determined but this is not
considered here.
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4. Experiments
Experimental Setup

s section describes the experimental evaluation of the Y-
tering algorithm using the ATIS-3 NOV93 and DEC94 test
. The training set has 4978 sentences in total which are se-
ed from the Class A training data in the ATIS-2 and ATIS-3
ora. The same experimental setup as in [7] was applied so that

Y-clustering approach can be compared fairly with the FST and
S models presented there.

As described in the previous section, the training sentences
e first preprocessed to replace lexical class members by their
esponding lexical class names. There are a total of 30 such
ain specific lexical classes defined for the ATIS domain. Then

r Y-clustering, all the resulting templates were annotated with
corresponding slot value pairs. These were derived from the
e semantic frame structures used in [7] 2. There were in total
istinct semantic slots.
To parse a test sentence, it was first preprocessed to apply the
e lexical class substitution as used in training, then aligned to
of the templates to compute a similarity score.

The following example shows the matching of a typical ATIS
ence.

how flights from burbank to milwaukee for today
how flights from city_name to city_name for time
how all flight_stop flights from city_name to city_name
(1) S(0) S(0) S(2) S(3) S(4) S(5) S(6)
ilarity: 0.778
plate Slots: FLIGHT_STOP = T(3)

FROMLOC.CITY_NAME = T(6)
TOLOC.CITY_NAME =T(8)

inated Slots/Values:
IGHT_STOP=T(3)=S(0)=NULL (Discarded)
OMLOC.CITY=T(6)=S(4)=O(4)=burbank (Confidence 0.778)
LOC.CITY=T(8)=S(6)=O(6)=milwaukee (Confidence 0.778)

re O is the original test sentence, S is the test sentence after
cal class substitution, T is the matched template, T(n), S(n)
O(n) means the n-th word in the template, the preprocessed
ence and the original sentence respectively, and A denotes the
d alignment. For example, in the above case, the first word
he template was aligned to the first word of the test sentence
enoted by S(1), and the second word of the template has no
nterpart in the test sentence as denoted by S(0).
Finally, the slots/values for all matches scoring more than 0.1
e pooled and ranked as described in the previous section to give
final output.

Results

Y-clustering approach was tested using the NOV93 and
94 ATIS-3 test sets which contain 893 sentences in total. Each

ence was annotated using the same frame structure as that ap-
d to the training set. This annotation was used as the reference.
extracted semantics of the test sentences were represented

the slot/value pairs output by the Y-clustering algorithm and
e were compared with the slot/value pairs from the reference.
F-measure computed from the precision (P) and recall (R) of
/value pairs was used to evaluate the overall decoding perfor-
ce. It should be noted that a strict comparison was adopted in
experiments where the match of slot/value pairs between the
rence and the decoder output is only marked correct if both
slot name and slot value are matched. This is the same strict
rion as used in [7].

These semantic frame structures were automatically derived from the
database queries supplied with the ATIS corpus.



Table 1: Performance comparison of Y-clustering, FST and HVS models on ATIS.

Y-clustering FST HVS
p 0.6 0.7 0.8 0.9 / /

#templates 657 1105 1827 2821 / /
Recall 93.86% 94.46% 95.39% 95.32% 86.71% 89.82%

Precision 87.61% 87.36% 88.22% 87.15% 84.84% 88.75%
F-measure 90.63% 90.76% 91.66% 91.05% 85.77% 89.28%

Table 1 shows the F-measure scores obtained by the Y-
clustering decoder for various values of similarity threshold ‘p’
when the full list of generated templates is used (i.e. Y is the max-
imum possible in each case). For comparison, the performance
of the FST and HVS models reported in [7] are also shown. It
can be observed that the performance of the Y-clustering approach
is competitive whilst requiring only a relatively small set of tem-
plates to be annotated (e.g. 657 for the case of p = 0.6). The FST
and HVS models on the other hand required the full training set to
be annotated i.e. nearly 5000 sentences. Note that increasing the
similarity threshold resulted in more templates, however, the cor-
responding increase in performance is modest. This suggests that
many of the additional templates generated are either redundant or
correspond to out of domain sentences.

As explained in section 2.3, an alternative way to control the
number of templates generated is to prune the final ranked list.
This in principle should remove outlier templates and focus the
decoding more on the in-domain templates. Table 2 presents the
results obtained for the p = 0.8 case when the generated template
list is pruned back to various Y values. As can be seen, this prun-
ing results in a significant increase in performance. When the top
600 templates were selected, the recall and precision values were
balanced and the F-measure reached a maximum at 93.42%. Com-
paring this result with the case for p = 0.6 in Table 1, it can be seen
that for a similar number of templates, setting a higher threshold
and then pruning works much better. Fig 2 also shows that even
when as few as 400 templates were used, the 92.89% F-measure
was still significantly better than the results obtained by the statisti-
cal parsers even though less than 10% of the training data had to be
semantically annotated. Finally, consistent with Table 1, Table 2
shows that generating more templates does not necessarily lead to
better performance, since the introduction of redundant templates
leads to poorer precision.

Table 2: Performance of template selection. (p=0.8)

Y-clustering (p=0.8)
#templates 200 400 600 800 1000 1827

Recall 88.47% 93.12% 93.75% 94.50% 94.85% 95.39%
Precision 92.06% 92.66% 93.09% 90.06% 90.33% 88.22%

F-measure 90.23% 92.89% 93.42% 92.23% 92.54% 91.66%

The above experimental results show that the Y-clustering
algorithm can produce competitive performance at reduced cost
compared to existing statistical semantic decoders. Furthermore,
for real applications, Y-clustering is extremely flexible. For ex-
ample, the templates can be manually defined for a new applica-
tion and only the word saliencies updated using Y-clustering. This
might be an effective way of bootstrapping a system, when initially
little training data is available.

Another advantage of Y-clustering is that disfluent and ill-
formed sentences as well as speech recognition errors do not sig-
nificantly degrade performance, as long as the key words are in-
tact. For instance, in the following example, the user first wanted
to ask for “the earliest” flights then changed her mind to ask for the
“cheapest” flights. The incomplete word then resulted in recogni-
tion errors in both O and S. However, since the key words were
correctly recognised, the decoder was still able to fully recover the
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antics without error.
how the earl- cheapest flights from london to boston
an you
hould me flights from london to boston can you
hould me flights from city_name to city_name can you
lights from city_name to city_name
ilarity: 0.745

Finally, note that in the experiments reported here, the Y-
tering algorithm was only used for semantic decoding. How-
, there seems to be no reason why templates could not also be
ed with the appropriate dialog act to allow dialog act detection
e performed simultaneously.

5. Conclusion
s paper has presented the Y-clustering algorithm for semantic
oding. Unlike conventional semantic parsers which either use
d-crafted rules or statistical models trained from fully anno-
d data, the proposed approach uses an unsupervised sentence
tering technique to automatically select a set of exemplar sen-
es from a training corpus. These exemplars are combined
simple sentence-level semantic annotations to form templates

ch are then used for semantic decoding. The performance
his approach was evaluated in the travel domain using the
S corpus, and compared with two previously reported statis-
l parsers. The results obtained from Y-clustering in terms of F-
sure are significantly better and furthermore, they are achieved
only 10% of the training sentences requiring annotation.

These results suggest that the Y-clustering approach has con-
rable potential. The DTW-based matching process is intrin-
lly robust to variations in the input such as those caused by
gnition errors, disfluencies and ill-formed sentences. Further-
e it is simple and flexible. For example, it should be straight-
ard to extend the method to provide dialogue act decoding.
method is now being incorporated into a working spoken di-
ue system and evaluation of its efficiency and robustness in
r applications will be reported in future work.
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