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Abstract
The state-of-the-art in automatic speech recognition is distinctly
Markovian. The ubiquitous ‘beads-on-a-string’ approach, where
sentences are explained as a sequence of words, words as a se-
quence of phones and phones as a sequence of acoustically stable
states, is bound to lose a lot of dynamic information. In this paper
we show that a combination with example-based recognition can
be used to recapture some of that information. A new approach
to combine Hidden Markov Model (HMM) and phone-example-
based continuous speech recognition is presented. Experiments
show that the combination outperforms the HMM recognizer, and
indicate that adding long-span information is especially beneficial.

Index Terms: example-based speech recognition, episodic, DTW.

1. Introduction
State-of-the-art ASR systems have had HMMs under the hood for
over a quarter of a century now. Virtually all successes in the field
owe to the great flexibility and scalability of the HMM model-
ing framework. Still, almost everybody agrees that this surefire
framework has theoretical weaknesses. The unrealistic underlying
independence assumptions and the general ‘beads-on-a-string’ ap-
proach where speech is explained as a sequence of words, words as
a sequence of phones and phones as a sequence of states, has been
drawing criticism from all comers. But pointing out its weaknesses
has proved far easier than coming up with better alternatives. Some
extensions such as segmental HMMs or ‘super-models’ such as
DBNs have generally been able to show superior performance on
small or well-chosen tasks, but overall, HMMs have retained their
status [1, 2].

Over the past few years we have investigated pure example-
based continuous speech recognition with promising results [3,
4, 5]. Example-based (or template-based) recognition captures
more segmental information than HMMs on two levels: dynamic
time warping matches acoustic paths rather than simplifying to
three ‘stable’ states, and a mechanism that uses extra (non-verbal)
information about the templates ensures smooth paths (see Sec-
tion 2.4). The smoothness of these paths is in fact long-span infor-
mation that cannot easily be used in the HMM framework. A ma-
jor downside of example-based modeling lies in the acoustic dis-
tance calculation at the frame level. Mainstream DTW uses sim-
ple Euclidean distances in some acoustic space, while HMMs have
state-dependent covariance matrices, i.e. state-dependent distance
measures. In previous papers we showed that porting these state-
dependent distance measures to the example-based framework re-
sults in large performance gains [4, 5].

However, while we were able to show that example-based
recognition can outperform context-independent HMMs, state-of-
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art context-dependent HMMs have so far remained out of
h. Still, given the differences between the HMM and DTW
oach, it is not unreasonable to assume that the scores are com-
entary and can be fruitfully combined. Combining scores

mall word-based systems has shown improvements of up to
[6, 7]. However, the extension to a large vocabulary phone-

d system may not be trivial due to the shear size of the DTW
ch space and the required optimizations.

2. Combined recognizer architecture
Concept

n combining HMMs and example-based recognition, an im-
ant issue is at which stage to combine hypotheses. Since
Ms use phone models to form hypotheses, the phone-level is
first opportunity for combination, while combining complete
ence hypotheses is the other extreme.

The latter is represented by the conceptually simplest ap-
ch, where an N-best list provided by the HMM recognizer is
ored with the DTW recognizer. This approach was successful
igit-string recognition in [7]. Rescoring whole sentences with
one-example-based DTW recognizer is impractical however:
ing the best sequence of phone templates with the correspond-
time alignment is a challenging task given the shear amount of
ne templates even moderately sized training databases contain.
ssible solution would be the use of bottom-up template selec-
techniques [3]. Rescoring an HMM word graph would also
bottom-up selection, as especially for long words the num-

of template hypotheses based on different within-word time
nments is still too large for an exhaustive search.

If the combination is done at the phone level, however, the use
hone boundary timing information allows a complete database
ch, ensuring that the best matching templates are used. Phone-
d combination fits well with a 2-layer decoder [8]. In the first
r the HMM system creates a dense phone graph. Any subse-
t decoding (pure HMM, pure DTW or HMM and DTW com-
d) then starts from this phone network. The graph’s phone
ndary timings can be used either as absolute givens or to limit

phone template transitions to a small window. Preliminary
riments showed that allowing a small time window for phone

sitions did not provide better results, so all experiments re-
ed on in this paper use the ‘strict’ boundary policy.

Figure 1 shows a block diagram of the combined system. The
er part consist of the HMM phone decoder, resulting in the
M-based phone graph. The lower part uses template matching
roduce the template graph. Template concatenation costs are
d when template scores are added to a running hypothesis.

se costs are the reason that it is not sufficient to simply use the
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Figure 1: Block diagram of the combined system.

score of the acoustically best matching template in the database
to rescore the corresponding arc in the HMM phone graph. The
sentence decoder combines the HMM and template graphs with
the concatenation costs, language model and lexicon to find the
best recognition. The dashed arc indicates that the DTW template
selection is constrained by the HMM phone graph.

The following sections discuss the system in detail.

2.2. HMM phone decoder

The ESAT/PSI speech group has a fully in-house developed state-
of-the-art speech recognition system [9, 10]. For the RM model we
used our default shared Gaussian approach, i.e. the density func-
tion for each of the 791 cross-word context-dependent tied states is
modeled as a mixture over an arbitrary subset of Gaussians drawn
from a global pool of 7487 Gaussians. The mixtures use on av-
erage 104.7 Gaussians to model the 36 dimensional observation
vector. The 36 dimensions were obtained by means of a mutual
information based discriminant linear transformation (mida) on 24
MEL spectra and their first and second order time derivatives [11].

A generic bottom-up phone decoder (as suggested in [8]) uses
no lexicon or language model information. In this work we de-
cided to constrain the phone decoder in the first layer to only these
phone sequences that are allowed by the lexicon and the language
model. An example phone graph for a short sentence is shown
in figure 2. The nodes contain timestamps. The arcs contain the
phone identity and the corresponding HMM score. Being based on
context dependent phones, the graph also encodes the context con-
straints used in the HMM system. Hence, several nodes with the
same timestamp exist. Furthermore, our graph construction algo-
rithm automatically removes all sub-optimal transition boundaries
between any two phones (given the context constraints imposed by
the HMM system).

2.3. Template selector

The DTW system’s preprocessing also uses the mida transform
based on the same raw features, but here only the 25 most in-
formative dimensions are retained. The frame-level distances are
scaled locally, as described in [4]. Contrary to the HMM graph,
context dependency constraints are not encoded in the template
graph. Instead, the template number is added on each arc, allow-
ing the on-line calculation of context costs. For each unique triplet
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t frame, end frame, phone id) in the HMM graph, the n best
plates –n is specified in Section 3– are added to the template
h.

Template concatenation

sentence decoder adds concatenation costs based on non-
al information about gender and original acoustic context of
templates [3]. This corresponds to multiplying with a prior
plate string probability in the following model for example-
d speech recognition:

(Ŵ, T̂) = argmax
W,T

f(X|W,T)P (T|W)P (W), (1)

re (Ŵ, T̂) expresses the fact that we are looking for a single
template string (T stands for ‘template string’) rather than a
over all template strings explaining a word string. The term
|W,T) in equation 1 is the acoustic likelihood of the input

n a template string and a word string. It corresponds to the
nent of the negative of the DTW score [4]. The term P (W)
e language model probability and P (T|W) is the prior prob-
ity of a template string given a word string. The condition is
ry and resolved through the lexicon, and hence only the prior
ability of the template string remains. We can rewrite the tem-

e string probability as

P (T) ≈
(

NTY
i=2

P (Ti|Ti−1)

)
P (T1), (2)

ch approximates the probability of a template string by the
uct of the probabilities of the templates given only their im-
iate predecessor. When templates are sufficiently long, the
ence of the direct predecessor will dominate the influence of
ore distant predecessors.

The template transition probabilities can be estimated based
number of general features, such as acoustic context and in-
ation about gender, speaker, environment, etc. In the current

em, a simple implementation of equation 2 is used: Differ-
gender of consecutive templates introduces a fixed penalty in
ransition probability. This favors paths that are predominantly
e or predominantly female. The transition probality is multi-
d with a second fixed factor when the original acoustic context
e template differs from the acoustic context in the hypothesis.

use a context length of a single phone. This second penalty can
onsidered the equivalent of context-dependent HMM models
he example-based approach. Finally, the transition probabil-
s multiplied with a third factor for each concatenation, except
n the two templates were neighbors in the original record-
This mechanism favors original sequences of templates longer
a single phone.

Sentence decoder

raph decoder combines the HMM phone graph, the template
h, the phonetic lexicon (also a graph, using both prefix and
x arc sharing), the template concatenation costs and the lan-
e model to find the best combined recognition path. We used
ple pseudo-left-to-right strategy with dynamic search space

truction and some mild pruning.
We used a linear score combination,

Scombined = w · DDTW − (1 − w) · log(LHMM ), (3)
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setup dev. oct89 feb91 sep92 mean
HMM only 2.26 2.83 2.13 5.08 3.35
Min. Graph 0.12 0.22 0.08 0.43 0.24
DTW only 3.75 4.02 3.30 6.21 4.51

DTW on HMM 3.05 4.43 3.14 5.35 4.31

Table 1: Baseline word error rates on the different test sets.

i.e. a weighted average of the DTW score DDTW and the neg-
ative log HMM likelihood − log(LHMM ). Since the template
concatenation costs conceptually belong to the DTW side of the
recognizer, they were weighted with the same weight as the DTW
score.

3. Experimental results
3.1. Task description

All experiments were performed on the Resource Management
(RM) benchmark. The RM training database contains about 3.5
hours of noise-free speech. The vocabulary size is 991, and a (non-
probabilistic) word-pair grammar is given. We used the CMU v0.4
phonetic lexicon, which has a lot of omissions and mistakes. Im-
proving the lexicon or adding pronunciation rules can dramatically
improve recognition accuracy [12], but no effort was made in this
respect. Results are presented on four test sets, but the ‘feb89’
test set was used as a development test set. All average results are
calculated over the three other test sets.

3.2. Baseline results

Table 1 shows the relevant baseline results for the combination ex-
periments. ‘HMM only’ is the baseline HMM result, correspond-
ing to a zero weight w in equation 3. This result compares favor-
ably to long-time reference performance on this benchmark [12].

While ‘HMM only’ represents the worst possible result we can
expect of the combination (in the case the optimal value for w is 0),
‘Min. Graph’ represents the best possible result we can achieve, as
it is the minimal Word Error Rate (WER) of all paths in the graphs.
It can be seen that this graph error rate is still far lower than the
actual HMM result.
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setup dev. oct89 feb91 sep92 mean
MM baseline 2.26 2.83 2.13 5.08 3.35

hone combine 1.87 2.65 1.69 3.52 2.62

no gender 2.11 2.65 2.01 3.66 2.77
o concat cost 2.23 2.94 2.25 4.77 3.32
o DTW score 2.38 2.50 2.13 3.79 2.81

le 2: Word error rates for HMM baseline, phone-based combi-
on of HMM and DTW and the same without using respectively
er transition cost, all example concatenation costs and DTW
stic scores.

‘DTW only’ in table 1 refers to recent results using the bottom-
xample-based approach described in [3], using the same fea-
s and local scaling as in the other experiments in this paper.
W on HMM’ refers to the situation where the weight w in
tion 3 is 1. In this case, only DTW scores and concatenation

s are used, but the example graph is based on the HMM graph,
ch introduces information from the HMM recognizer into the
em, especially because the HMM graph is sometimes only one
ne ‘wide’ (see figure2).

Combination results using phonetic templates

upper part of table 2 compares the HMM baseline with the
lt for the combined system using only phone examples (line
ne combine’). The development test set was used to set the
imum number of templates per HMM arc to 40 and to set the
ht w from equation 3 to 0.2. Suitable values for the concate-

on costs were also set on the development test set. It can be
from the table, that the combination approach causes a 22%

tive improvement in WER. This leads to a significant improve-
t at a 99% confidence level, using the non-parametric Boot-
paired significance test [13].

Combination results using longer templates

n extension to the phone-based approach of finding examples
ach phone arc in the HMM graph, we also experimented with
er units. From the HMM graph, a graph was computed that
ains all biphones in that graph. Based on that biphone HMM
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Figure 2: An example of an HMM phone graph.



setup dev. oct89 feb91 sep92 mean
HMM baseline 2.26 2.83 2.13 5.08 3.35
phone combine 1.87 2.65 1.69 3.52 2.62
mix phone,bi,tri 1.68 2.24 1.65 3.32 2.40

Table 3: WER comparison of phone-based combination and com-
bination based on a mixture of longer templates.

graph, the best matching biphone templates were calculated. The
same procedure was used to find the best triphone templates. A
mixture graph of phone, biphone and triphone templates was then
combined with the original HMM graph. Table 3 shows that a
further improvement is possible using this mixture. The presented
result was obtained by using a mixture of 20 phone examples, 10
biphone examples and 5 triphone examples if available. The total
relative improvement over the HMM baseline is 28%.

3.5. Discussion

The lower part of table 2 sheds some light on the cause of these
rather large improvements. ‘No gender’ is identical to the pre-
vious line, except that no gender-based concatenation costs are
used. While in the best phone-based combination the chosen tem-
plate strings are almost entirely gender-consistent (avg. number
of gender-consistent phones in sequence is around 30, while the
avg. number of phones per recognized sentence is about 38), with-
out gender costs the paths become far less gender-consistent (less
than 5 gender-consistent phones in sequence on average). On av-
erage adding gender-based concatenation costs results in a 5% rel-
ative improvement. ‘No concat cost’ shows the result of the com-
bination, but without using example concatenation costs. Since
this result is equal to the HMM baseline, it seems the observed
improvement is completely due to the longer-span modeling in-
troduced by the template concatenation costs, rather than a pos-
sibly better within-phone acoustic modeling of DTW vs. HMMs.
However, setting all DTW scores to the corresponding HMM score
and relying on the concatenation costs (line ‘no DTW score’) also
doesn’t explain the complete improvement. Therefore, it has to
be concluded that the DTW score is useful not only for selecting
templates but also for suitably weighting the concatenation costs.

4. Conclusion
In this paper we have introduced a new architecture to efficiently
combine HMMs and example-based recognition based on a two-
layer approach. Experimental results have shown that the combi-
nation outperforms state-of-the-art HMMs. Furthermore, we have
pinpointed the reason for the observed improvement: the improve-
ment was mainly due to template concatenation costs, which add
long-span information. Thus, we confirmed that HMMs suffer
from a lack of long-span modeling, due to the much criticized
‘beads-on-a-string’ approach. While the experimental results are
promising, they are not definitive. On the one hand, the tem-
plate concatenation model we used was rather primitive, and hence
further improvements are certainly possible. On the other hand,
the RM benchmark has a good match between training and test
sets, which might inflate our results. Experiments on more com-
plex benchmarks that do not exhibit the same limitations as RM
(e.g. the Wall Street Journal benchmark) are in progress. Very pre-
liminary results show improvements of 10% relative.
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