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Abstract
The level of quality that can be achieved in concatenative text-to-
speech synthesis depends, among other things, on a judicious seg-
mentation of all units in the underlying unit selection inventory.
We have recently advocated the iterative refinement of unit bound-
aries based on a data-driven feature extraction framework sepa-
rately optimized for each boundary region [1]. This paper presents
the formal proof of convergence of the iterative algorithm, as well
as a detailed analysis of its potential benefits for concatenative TTS
synthesis. A formal listening test, in particular, underscores the
practical viability of the approach for unit boundary optimization.

Index Terms: speech synthesis, unit selection, segment concate-
nation, discontinuity perception, boundary optimization.

1. Introduction
In concatenative text-to-speech (TTS) synthesis, the selection of
the best unit sequence is cast as a multivariate optimization task,
where the unit inventory is searched to minimize suitable cost cri-
teria across the whole target utterance [2]. This approach implic-
itly assumes that all units have been judiciously segmented, be-
cause boundary placement critically influences how much discon-
tinuity one is likely to encounter after concatenation, and thus how
natural synthetic speech will sound [3].

Automatic segmentation algorithms do not calculate the glob-
ally optimal cut point between two contiguous units given the en-
tire recorded inventory. Instead, on the basis of general models
trained thereon, they seek the best local cut point between these
two specific units [4]. In many cases, subsequent boundary refine-
ment can make a huge difference in the users’ perception of the
concatenated acoustic waveform [5]. For highest quality, it would
thus be desirable to hand-check every cut point, which is obviously
impractical in modern TTS systems. The outcome is often a some-
what uneven performance, where synthetic speech may well sound
very good in general but still regularly break down, in ways that
are difficult to predict from unit inventory statistics.

We have recently proposed [1] a procedure to systematically
optimize all unit boundaries before unit selection, so as to effec-
tively minimize the likelihood of a really bad concatenation. We
refer to this (off-line) optimization as the data-driven “training” of
the unit inventory, in contrast to the (run time) “decoding” pro-
cess embedded in unit selection. The method of [1] is based on
an alternative TTS feature extraction [6], [7], inspired by the la-
tent semantic mapping (LSM) paradigm [8]. This leads to a global
discontinuity metric for characterizing the acoustic (dis-)similarity
between two candidate segments. Boundary training then lever-
ages this objective function to take into account all potentially rel-
evant units in an iterative manner.

The aim of this paper is to present a formal proof of conver-
gence for the iterative procedure introduced in [1], as well as a de-
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Figure 1: Speech Segment Notation (K = 3).

d analysis of its potential benefits for concatenative TTS syn-
is. The next two sections briefly review the underlying LSM
ework and the iterative boundary training procedure. Sec-
4 addresses the convergence of the iterative algorithm, and
ion 5 analyzes a representative example, in terms of both inter-
discontinuity distribution and acoustic waveform differences.
lly, in Section 6 a formal listening test confirms that boundary
ing can indeed lead to better synthesis.

2. LSM Framework
x ideas, consider among the set of recorded utterances the col-
on of all possible speech segments ending or starting within
phoneme P , so we can concentrate on a (diphone-style) con-
nation within P . Two such acoustic segments, denoted by S1-
nd L2-S2, are depicted in Fig. 1. Let π−K+1 . . . π0 . . . πK−1

ectively, σ−K+1 . . . σ0 . . . σK−1) denote the 2K − 1 cen-
1 pitch periods associated with the boundary region of S1-

(respectively, L2-S2), such that the boundary between S1 and
(respectively, L2 and S2) falls exactly in the middle of π0

ectively, σ0). For voiced speech segments, each pitch pe-
is defined as the span between two consecutive glottal closure
ts, and obtained through conventional pitch epoch detection

., [9]). For voiceless segments, the time domain signal is simi-
chopped into analogous, albeit constant-length, portions.

Further assume that there are M segments like S1-R1 and L2-
resent in the unit inventory, i.e., with a boundary within P .
results in (2K − 1)M centered pitch periods in total, en-

ulating the entire boundary region. Assuming N denotes the
imum number of samples observed in each of these, we sym-
rically zero-pad and appropriately window all instances to N ,
ecessary. The outcome is the ((2K − 1)M × N ) matrix W
trated in the left-hand side of Fig. 2.

At this point we perform the eigenanalysis of W via singular
e decomposition (SVD) as [7]:

W = U S V T , (1)

With a centered representation, the boundary can be precisely char-
ized by a single vector in the resulting feature space [7], instead of
red a posteriori from the position of the two vectors on either side.
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Figure 2: Decomposition of the Input Matrix.

where U is the ((2K − 1)M × R) left singular matrix with row
vectors ui (1 ≤ i ≤ (2K−1)M ), S is the (R×R) diagonal matrix
of singular values s1 ≥ s2 ≥ . . . ≥ sR > 0, V is the (N × R)
right singular matrix with row vectors vj (1 ≤ j ≤ N ), R <
min(N, (2K − 1)M) is the order of the decomposition, and T

denotes matrix transposition. Both left and right singular matrices
U and V are column-orthonormal, i.e., U T U = V T V = IR (the
identity matrix of order R). Thus, the column vectors of U and V
each define an orthornormal basis for the LSM space L spanned
by the (R-dimensional) ui’s and vj’s.

The interpretation of (1) in Fig. 2 focuses on the orthornormal
basis obtained from V . Projecting the row vectors of W onto it
defines a representation for the centered pitch periods in terms of
their coordinates in this projection, namely the rows of US. Thus,
(1) defines a mapping between the set of centered pitch periods
and (after appropriate scaling by the singular values) the set of R-
dimensional feature vectors ūi = uiS. These can then be viewed
as feature vectors analogous to, e.g., the usual cepstral vectors.

3. LSM–Based Boundary Training
Consider now the concatenation S1-S2, shown as the shaded area
in Fig. 2, and denote by δ0 the concatenated centered period (i.e.,
consisting of the left half of π0 and the right half of σ0). The
discontinuity associated with this concatenation is calculated in
terms of the trajectory difference before and after concatenation,
as expressed in the LSM feature space L.

From [1], the representation of δ0 in L is the concatenation
vector ūδ0 = δ0V . Furthermore, the closeness between two indi-
vidual vectors (cf. [6], [7]) is taken to be:

c(ūk, ū�) = cos(ukS, u�S) =
uk S 2 u T

�

‖ukS‖ ‖u�S‖ , (2)

for any 1 ≤ k, � ≤ (2K − 1)M . With the shorthand notation:

c̃(uσ−k , uσ0 , uσk ) =
c(ūσ−k , ūσ0) + c(ūσ0 , ūσk )

2
, (3)

for the average closeness across the boundary σ0, we therefore
specify the discontinuity score between S1 and S2 as:

d(S1, S2) =

K−1X
k=1

2 c̃(uπk , uδ0 , uσk )

− c̃(uπk , uπ0 , uπ−k ) − c̃(uσ−k , uσ0 , uσk ) . (4)
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Figure 3: Iterative Training of Unit Boundaries.

discontinuity score can be thought of as the relative cumula-
change in closeness that occurs during concatenation over the
re boundary region considered. The closer to zero, the more at-
ive the concatenation. Conversely, the larger the discontinuity
e, the more perceptible the concatenation [7].
Once (4) is specified, the iterative boundary training procedure
ws the flowchart of Fig. 3. For each phoneme P , M segments
the unit inventory straddle the boundary. These M bound-
must thus be jointly optimized so that all M2 possible con-

nations exhibit minimal discontinuities. The basic idea is to
s on each possible boundary region in turn, compute the LSM
e associated with this region, adjust individual boundaries one
time in that space, update the boundary region accordingly,
iterate until convergence.
The initialization step can be performed in a number of differ-
ways,2 but in practice, we have found little difference in be-
or based on these various forms of initial conditions [1]. Once
is done, we gather the 2K − 1 centered pitch periods for each
instance, and derive the resulting LSM space L. This leads

2K − 1)M feature vectors in the space, and hence as many
ntial new boundaries. For each of them, we compute the as-
ated average discontinuity by accumulating (4) over the set of
possible concatenations. This results in 2K − 1 discontinuity
es for each instance, the minimum value of which yields the
point to be retained. The new boundaries form the basis for a
boundary region, and the procedure iterates until no change in
oints is necessary.

Since the boundary region shifts from one iteration to the next,
LSM space does not stay static. While this complicates the
vation of a theoretical proof of convergence, it can still be done
xploiting the fact that after each iteration the space remains
ively close to its previous incarnation.

4. Proof of Convergence
t observe that each iteration of training aims at minimizing

1, S2) for all possible segments S1 and S2 within the cur-
boundary region. Thus, from (2)–(4), in order to solve the

For example, the initial boundary for each instance can be placed in
ost stable part of the phone (where the speech waveform varies the

), or, more expediently, simply at its midpoint [1].



optimization problem it is sufficient to minimize the Frobenius
norm of US 2U T . Taking into account the fact that U is column-
orthogonal, it follows from (1) that the problem is equivalent to
minimizing tr(WW T ), where tr(·) denotes matrix trace.

Assume now that at iteration n, tr(WnW T
n ) is minimized.

Due to boundary shifts from iteration n to iteration n + 1, some
pitch periods in Wn are dropped, and replaced by some new ones
in Wn+1. Denote by Yn the pitch periods dropped, and by Yn+1

the pitch periods added. Exploiting the linearity of the framework
and re-arranging the rows yields:

Wn =

»
Yn

Z

–
, Wn+1 =

»
Z

Yn+1

–
, (5)

where Z represents the (majority of) pitch periods in Wn+1 that
were already present in Wn. Introducing the matrix W̃ as the su-
perset of the pitch periods in Wn and Wn+1, we can write:

W̃ =

2
4 Yn

Z
Yn+1

3
5 =

»
Wn

Yn+1

–
=

»
Yn

Wn+1

–
. (6)

Using the properties of the trace, this in turn entails the three equiv-
alent expressions:

tr(W̃W̃ T ) = tr(YnY T
n ) + tr(ZZ T ) + tr(Yn+1Y

T
n+1) , (7)

= tr(WnW T
n ) + tr(Yn+1Y

T
n+1) , (8)

= tr(YnY T
n ) + tr(Wn+1W

T
n+1) , (9)

where all values are non-negative. If the space L remained per-
fectly static, then clearly minimizing tr(WnW T

n ) would also min-

imize tr(W̃W̃ T ), otherwise a different segmentation would yield
a lower tr(WnW T

n ) in the first place. But, from (7), this can only
happen if:

tr(Yn+1Y
T

n+1) ≤ tr(YnY T
n ) . (10)

Accordingly, we now relax the assumption of perfect stationarity,
but constrain any changes in L to conform to the condition (10).
Since, from (8) – (9):

tr(Wn+1W
T

n+1) = tr(WnW T
n ) + tr(Yn+1Y

T
n+1) − tr(YnY T

n ) ,
(11)

we conclude that, under the constraint (10):

tr(Wn+1W
T

n+1) ≤ tr(WnW T
n ) , (12)

which completes the proof. The cumulative distance metric (4)
is thus guaranteed to converge, in the least-squares sense, to the
global minimum tr(ZZ T ), where (at the limit) Z corresponds to
the final incarnation of the space L.

The associated final boundaries are therefore globally optimal
across the entire set of observations for the phoneme P . Note that,
with the choice of the LSM framework, this outcome holds given
the exact same discontinuity measure later used in unit selection.
Not only does this result in a better usage of the available train-
ing data, but it also ensures tightly matched conditions between
training and decoding.

5. Experimental Results
We now briefly summarize some of the results we have obtained
using male and female voice databases deployed in MacinTalk,
Apple’s TTS offering on MacOS X. Qualitatively, these databases
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gure 4: Distributions in Inter-Unit Discontinuity, P = [OI].

airly similar to the Victoria corpus described in detail in [10].
articular, recording conditions closely follow those mentioned
0], though individual utterances generally differ.

The phoneme P = [OI] (denoted in SAMPA computer read-
phonetic notation, cf. [11]) is especially interesting, because
apid changes in acoustic targets occurring in the middle of the

neme tend to complicate the search for an optimal cut point.
this phoneme, boundary training typically yields a consis-
reduction of 30% in the average inter-unit discontinuity score
ss all possible concatenations [1].

Fig. 4 displays the distributions of inter-unit discontinuity
es observed before (left-hand plot) and after (right-hand plot)
ing the boundaries. Baseline boundaries are (classically) ob-

ed by placing the cut point in the most stable part of the phone,
le adjusted boundaries are obtained after, in this case, 16 iter-
ns of boundary training. It can be seen that training shifts the
e of the distribution appreciably to the left: we conjecture that
consistent improvement in all concatenations is largely due to
global scope of the training. Indeed, for [OI] it seems heav-
uboptimal to constrain cut points to lie in a (locally) steady
region. Instead, the boundaries are now able to move in an

pervised manner to attain the relevant global minimum.

To further illustrate the point, the attached files
ample0_base.aiff” and “Example0_new.aiff”
two renditions of the nonsense word “boyb” (pronounced

Ib]), slowed down to a speaking rate of approximately
words per minute for emphasis. In both cases, the only
atenation between non-contiguous segments occurs within
honeme [OI]. No signal processing is done beyond the slow

n, and, in particular, no manipulation of F0 is performed.
only difference between the two renditions concerns the

ndaries (baseline or adjusted) in the unit inventory.

The analysis of the resulting signals is presented in Figs. 5
6. In the first rendition, only slight discontinuities are present
oth pitch (blue line) and amplitude (yellow line), indicating
the perception of a bad concatenation comes mostly from the
ontinuity related to the particular location of the cut point. In
second rendition, pitch and amplitude have approximately the
e profiles as before, again suggesting that they are not signif-
t factors in any perceptual difference between the two rendi-
s. The noticeable improvement that can be heard can therefore
aced directly to a better location for the cut point.



Figure 5: Analysis of Baseline Rendition of “boyb.”

Figure 6: Analysis of New Rendition of “boyb.”

6. Formal Listening Test
To establish the practical validity of the method, a more formal
listening test was performed. As stimuli, we generated a set of
whole sentences where the database was segmented entirely using
either the baseline or the new method.3

Nine participants were selected, including two “naive” users,
five generally conversant in speech processing, and two with a
more advanced background in psycho-acoustics and phonetics.
For each pair of utterances, they were asked to listen sequentially
to the two versions, and indicate which version they preferred over-
all (if any), and why. In each case, the order of presentation was
randomized. The results are tabulated in Table I.

Associated files are labelled “Example$i_base.aiff”
for the baseline and “Example$i_new.aiff” for the new
boundary training, where 1 ≤ i ≤ 5. Example1 was selected
in part because it features a [bOIb] segment similar to the one ana-
lyzed above. Close attention to this segment reveals that the same
outcome prevails, despite involving a different database recorded
by a different voice talent of a different gender. Participants also
noted some noticeable improvement in the vicinity of “the purple.”

The other examples feature increasingly longer sentences, and,
not suprisingly, differences between the two approaches appear to
be more pronounced over some segments than others. Segments
most often singled out by participants include: in Example2,
“the cow” and “right away;” in Example3, “years ago” and
“toy around;” in Example4, “expected” and “negatively;” and in
Example5, “a writer,” “insisted in court,” and “specific echoes.”

Table I shows that, on average, the sentences synthesized from

3Here signal processing was limited to some elementary post-selection
diphone blending, which was performed with a very short window (30
samples) for the specific purpose of avoiding particularly egregious (and
distracting) “glugs.” As before, there was no manipulation of F0 at all.
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I: Listener Preference Results. Maximum Score Achievable is 9.

Utterance Prefer Prefer Prefer
Base None New

xample1 2 2 5
xample2 2 4 3
xample3 1 0 8
xample4 4 2 3
xample5 0 0 9

verage Score 1.8 1.6 5.6
5% Confidence ± 1.2 ± 1.3 ± 2.2

database featuring the optimal cut points were preferred over
e times more often than those synthesized from the database

the baseline cut points. Furthermore, the “Prefer New” out-
e is substantially more likely than the combination of “Prefer
” and “Prefer None” outcomes. We infer that the globally op-
l approach described in this paper resulted in boundaries with
aller amount of perceivable audible discontinuity.

7. Conclusion
have derived a formal proof of convergence for the iterative
dary training procedure introduced in [1], and analyzed typi-
istributions in inter-unit discontinuity scores observed before
after training. In addition, a formal listening test has con-
ed that utterances synthesized with adjusted boundaries tend
omprise less egregious discontinuities than those synthesized
baseline boundaries. This illustrates the compelling potential
e approach for concatenative TTS synthesis. Future efforts
concentrate on more systematically exploring the influence of

decomposition parameters (particularly K and R), in order to
r characterize their relationship to factors such as phoneme
tity, number of observations, dominant style of elocution, and
all prosodic context distribution.
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