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Abstract
Synthetic speech perception experiments may make use of 

several acoustic dimensions in order to adequately model 
listeners’ perception; however, the number of stimuli increases 
exponentially as dimensions are added. A relatively large 
number of identification responses per stimulus are needed in 
the vicinity of category boundaries in order to model the 
boundaries with reasonable accuracy. Fewer responses per 
stimulus are needed to model portions of the stimulus space 
where a single response category predominates. Rather than 
collecting the same number of responses for each stimulus, an 
experiment can therefore be shortened via adaptive sampling. 
An adaptive sampling procedure is described. After an initial 
pass through the stimuli, the procedure uses a logistic regression 
model to select stimuli to resample in subsequent rounds. 
Results of simulations indicated that the number of trials in the 
experiment could be reduced by a third without substantially 
affecting the results. 
Index Terms: adaptive sampling, speech perception 

1. Introduction
A typical speech perception experiment involves creating a 

set of synthetic speech stimuli whose acoustic properties form a 
multidimensional matrix, randomly presenting each stimulus a 
fixed number of times, and, at each presentation, having a 
listener classify each stimulus as one of a number of speech 
sound categories. Data consist of the proportion of responses for 
each category given to each stimulus. A simple experiment 
might involve a two-dimensional matrix and two speech sound 
categories, e.g., equally spaced vowel duration steps on one 
dimension and equally spaced first formant (F1) steps on 
another dimension, covering the range of F1 and duration values 
between English  and . More complex experiments may 
involve a larger number of response options and a larger 
number of stimulus dimensions. Several acoustic dimensions 
may be necessary to adequately model listeners’ perception, but 
as the number of dimensions increases, the number of stimuli 
increases exponentially. 

From the perspective of building an accurate unbiassed 
statistical model of a listener’s speech categorisation, it is 
desirable to obtain a large number of responses for each 
stimulus. With a larger number of samples, there will be greater 
resolution in the proportional responses for each category. 
Unfortunately, collecting a large number of responses from 
human participants is time consuming, the participants can 
quickly become fatigued, and they may be reticent to return to 
participate in subsequent sessions in longitudinal or multiple-
condition studies. The present paper describes an adaptive 
sampling procedure which was developed in order to make 
more efficient use of participants’ time whilst still obtaining a 

rea
The
wit
sam

for 
Eng
pro
stud
vow
dim
dim
the
F1–
40 
dim
the
[ F
stim
com
of 
em
list
fou
pro
resp

3.1

cer
tim
spa
ide
mid
the
irre
stim
alw
are
obt
stim
cate
occ
thir
nei
as 
resp

857

INTERSPEECH 2006 - ICSLP
peech Perception Experiments 

orrison 

guistics 
on, Alberta, Canada 
.ca

sonable degree of resolution in the proportional responses. 
 procedure focuses on boundaries and has some similarities 

h up-down methods [1]. For a different approach to adaptive 
pling focussing on best exemplars see Evans & Iverson [2]. 

2. Stimulus Set 
The adaptive sampling procedure was initially developed 
use with an experiment investigating the perception of 
lish , , , , and Spanish , ,  [3]. The 

cedure will be described using the stimulus set from this 
y as a concrete example. There were a total of 90 synthetic 
el stimuli covering three acoustic dimensions. The duration 
ension had three points [80, 95, 110 ms]; the F1–F2 
ension had ten points, the first and second formants (F2) at 

 beginning of the vowel covaried forming a diagonal in the 
F2 space [F1: 283–580 Hz in 33 Hz steps, F2: 2090 1730 in 

Hz steps]; and the vowel inherent spectral change (VISC [4]) 
ension had three points, from the beginning of the vowel to 

 end F1 and F2 either diverged, remained flat, or converged 
1: 99, 0, +99 Hz, F2: +120, 0, 120 Hz]. The number of 
uli had been winnowed from a larger stimulus space, by 
bining the F1 and F2 dimensions and reducing the number 
points on each dimension; however, the stimuli were 

bedded in words in carrier sentences and in pilot tests it took 
eners approximately half an hour to identify each stimulus 
r times (360 trials). The goal was to develop a sampling 
cedure which would give a resolution comparable to six 
onses per stimulus within the half hour time frame.

3. Adaptive Sampling Procedure 

. Basic procedure 
The essential principle underlying the procedure is that 

tain stimuli will not need to be sampled a large number of 
es because they fall near the middle of a listener’s perceptual 
ce for a given category, and will therefore always be 
ntified as that category. For example, if a stimulus is in the 
dle of the perceptual space for a listener’s  category, then 

 listener will always identify this stimulus as ; thus 
spective of the number of responses the listener gives to this 
ulus, the proportion of  responses for this stimulus will 

ays be 1. Hence, once portions of the perceptual space which 
 far from boundaries have been located, there is no need to 
ain further responses in those areas. On the other hand, 
uli near category boundaries may be identified as one 
gory on one occasion, and as another category on another 
asion. For example, a stimulus may be identified as /i/ two 
ds of the time and as  one third of the time, and a 
ghbouring stimulus may be identified as  half the time and 

 half the time. In order to determine the proportion of 
onses with reasonable resolution such stimuli must be 
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sampled a considerable number of times.
The procedure consists of the following steps:

1. All the stimuli are sampled twice, i.e., all the stimuli are 
presented in two blocks (once in each block) and the listener 
gives a identification response on each trial (180 responses).

2. A logistic regression model is fitted to the response data, and 
the predicted probabilities for each category are calculated 
for each stimulus. 

3. The error between the predicted probability and observed 
proportion for each category for each stimulus is calculated. 

4. Half of the stimuli, primarily those with the largest error 
scores, are resampled (45 responses, see Section 3.2). 

5. Steps 2 through 4 are repeated three more times. 

This procedure results in 360 trials, and each stimulus is 
sampled a minimum of twice and a maximum of six times. After 
two rounds, a stimulus which receives two  responses and is 
surrounded by stimuli which receive two  responses is 
unlikely to be near a category boundary. This stimulus will have 
an observed proportion of  responses of 1, and a predicted 
probability for  close to 1. This stimulus will therefore have a 
low error score, and is unlikely to be resampled in subsequent 
rounds. In contrast, a stimulus which receives two  responses 
but is adjacent to stimuli which receive  responses, will have 
an observed proportion of  responses of 1, but will have a 
predicted probability for  that is somewhat less than 1. This 
stimulus will therefore have a higher error score, and is more 
likely to be resampled in subsequent rounds. A stimulus which 
receives one  response and one  response could have a small 
error between observed and predicted values, but, especially in 
a multidimensional stimulus space and with multinomial 
response categories, it is more likely to have a relatively large 
error. In practice, the vast majority of stimuli near category 
boundaries receive relatively high error scores, and stimuli far 
from category boundaries receive low error scores.  

An alternative procedure which resampled the stimuli with 
predicted probabilities furthest from 0 and 1 was also explored. 
Selecting stimuli using this criterion gave similar results to 
using the highest-error-score criterion, but the latter offered the 
advantage of a stronger mistake amelioration feature: A mistake 
where a listener accidentally presses the wrong button is likely 
to increase the error score for the stimulus on which the mistake 
was made. Using the highest-error-score criterion, that stimulus 
is therefore more likely to resampled, leading to a reduction in 
the effect of the mistake.  

The multinomial logistic regression algorithm was based on 
Haberman [5] and its use in speech perception experiments is 
described in Nearey [6, 7]. The model fitted was a simple first-
order model (V + V×F1 + V× F1 + V×dur) containing one bias 
and three stimulus-tuning coefficients for each vowel category. 
Stimulus-tuning coefficients consisted of F1-tuning with initial 
formant values for F1 entered in Hertz (since F2 covaried with 
F1 it was redundant), F1-tuning, with change in F1 value from 
the beginning to the end of the vowel entered in Hertz, and 
duration-tuning, with vowel duration values entered in 
milliseconds. All stimulus properties were treated as continuous 
variables. The number of each type of coefficient in the fitted 
model was actually one less than the number of categories, the 
coefficients for the last category being redundant and calculable 
as minus the sum of the coefficients for the other categories. A 
simple model is preferred to avoid overfitting the sparse data 
sets, especially near the beginning of the adaptive sampling 
procedure. An overfitted model may wrap around fluctuations 
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the data sets due to course sampling and give lower error 
res to stimuli near boundaries than would the optimal model. 
simulations, use of a quadratic model resulted in unstable 
lts with high variances for the coefficients in the final 

del. Using an underfitted model during adaptive sampling 
l be less efficient than the optimal model, but will not 
iterate more complex patterns in the data which may be 
tured by fitting a more complex model to the final results. If 
 model makes a linear approximation of a curved boundary 
n some stimuli will be a poor fit to the model because the 
del is underfitted; however, this will lead to these stimuli 
ng resampled and the curved boundary will still be 
resented in the final data set. 

Figure 1 Example of selection of stimuli to be resampled 
on the basis of absolute errors in proportions (AEP) for 

a model fitted to two responses per stimulus.

. Selecting stimuli to resample 
Rather than simply resampling the 45 stimuli with the 

hest error scores, the stimuli to resample were chosen such 
t those with higher error scores were most likely to be 
mpled but those with lower error scores also had some 

bability of being resampled. This ensured that listeners heard 
e reasonably good examples of the vowel categories in each 

nd. Good examples provide the listeners with anchors 
inst which to compare more ambiguous stimuli, good 
mples will also be easy to identify and thus be reassuring for 
 listeners. The stimuli to resample were selected 
hastically as follows: 

The stimuli were ranked in ascending order of their error 
scores, resulting in a sequence which increased in an 
approximately exponential manner (see Figure 1). 
he error score of the 67th stimulus of the 90 ranked stimuli 

was obtained. (Vertical line in Figure 1) 
ntegers from 1 to 90 were randomly permuted then divided 
by 90 and multiplied by the error score of the 67th ranked 
stimulus. This generated a sequence of random numbers with 
the highest number being equal to the error score of the 67th 
ranked stimulus.  
The sequence of ranked error scores and the sequence of 
random numbers were added. (Noisy line in Figure 1) 
Stimuli with error-plus-random scores of greater than the 
median value were selected for resampling. (The median 
value is represented by the horizontal line in Figure 1. The 
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stimuli selected for resampling are indicated by the bars at 
the bottom of the figure.) 

Half the stimuli are resampled. All the stimuli have a non-
zero probability of being resampled which increases with their 
error score, and the quarter of the stimuli with the worst fit are 
guaranteed to be resampled.

3.3. Error measures 
Standard error measures such as Root Mean Squared (RMS) 

error are usually calculated assuming that each stimulus is 
sampled an equal number of times, which is not the case for the 
adaptive sampling procedure. Ad hoc error measures used 
instead were the Absolute Errors in Proportions (AEP) for 
individual stimuli, and the Sum of the Absolute Errors in 
Proportions (SAEP) for the stimulus set. 

The AEP for a stimulus is calculated as half the sum of the 
absolute difference between the observed proportion of 
responses and the predicted proportion of responses for each 
category for that stimuli, or equivalently as half the sum of the 
absolute difference between the observed and predicted number 
of responses for each category divided by the total number of 
responses for that stimulus: 

The theoretical minimum and maximum values for AEP are 
0 and 1 (the scaling factor of ½ was introduced to make the 
maximum value 1). An AEP value of 0 indicates a perfect fit 
between the observed responses and the model’s fitted 
responses, and an AEP value of 1 indicates a complete 
mismatch (e.g., if the participant always responded with one 
category, and the model predicted a probability of zero for that 
category). The SAEP for the stimulus set is calculated as the 
sum of the AEP for all stimuli. 

An alternative error measure could have been to calculate 
errors of fit on the basis of differences between observed and 
predicted logit values. The error measure based on proportions 
was preferred since errors which would be the same size in 
logistic values, are smaller in proportion values when they are 
close to proportions of 0 and 1 relative to when they are near 
proportions of .5, and this weighting was advantageous because 
the error measures were being used as a criterion to select 
stimuli that were near category boundaries.  

4. Simulations
To obtain test data, the full set of stimuli were presented in 

random order in six blocks (540 trials), and on each trial the 
stimulus presented was identified by a single listener as one of 
the four English vowel responses. A first-order logistic 
regression model was fitted to the whole data set (a territorial 
map based on this model is given in Figure 2). The a posteriori 
probabilities from this model were used as population 
parameters in a multinomial sample generator which generated 
100 simulated response sets of six responses per stimulus. 
Simulated responses were generated independently for each 
stimulus. To generate a single simulated response for a stimulus, 
the sample generator chose one of the four English vowels ,

, , , the probability of choosing a particular response 
category on each occasion being dependent on its a posteriori 
probability for that stimulus.  
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Figure 2 Territorial map based on logistic regression 
model fitted to original test data. 

Whole-set logistic regression models were fitted to each of 
 100 simulated response sets and the SAEP and coefficient 
ues saved. Models based on the final set of responses 
cted by the adaptive sampling procedure were fitted to the 
e 100 simulated response sets. The first two simulated 
onses to each stimulus were used in both models, but 

sequent simulated responses for a stimulus were only used in 
 adaptive model if that stimulus was selected for resampling. 
 whole-set models were compared with the adaptive models: 
each sample set the difference between the logistic 

ression coefficient values for the whole-set model and the 
ptive model were calculated, and these were used as the test 
istic in paired-sample t-tests.
Different variants of the adaptive procedure were tested 
g different criteria for selecting the stimuli to resample and 
erent levels of complexity for the logistic regression model. 
 version of the adaptive procedure described above was 
cted as giving the closest results to the whole-set model. 

merical comparisons between the whole-set model and this 
sion of the adaptive model are presented below.  
Table 1 presents the results of comparisons between the 

ole-set and the adaptive model for the simulated response 
. The difference in SAEP between the models was not 
ificant. The differences between models for several 

fficients were significant; however, the size of the difference 
 small, none of the mean differences had magnitude greater 

n 4.5%. Three of the four significant differences were related 
a single response category, , and were therefore not 
ependent of each other: The magnitudes of the bias and the 
ulus-tuned coefficients for  all decreased by similar 

ounts (3.3–4.4%) indicating a slight reduction in the estimate 
the rate at which responses changed from  to other 
gories, but little change in the location of the boundary (if 

 size or direction of the change in the bias had differed from 
 size of the change in the stimulus-tuned coefficients, then 
 modelled location of the boundary would have changed). 
In order to test the sampling method on a wider set of 
ulated data that might reflect a wider range of listeners, the 
a set was perturbed in several ways. The coefficient values 

 the logistic regression model based on the original data 
e reduced to 25% of their original values, and used to
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generate a further series of 100 sample sets. SAEP was 
significantly higher for the adaptive compared to the whole-set 
models [mean 20.425 vs 18.857, t(99) = 18.823, p < .0038], but 
none of the coefficient values had significant differences. 
Another series of 100 sample sets was generated on the basis of 
the original model, but 25% of the responses were replaced by 
responses generated at random with each response category 
having an equal probability irrespective of stimulus properties. 
SAEP was significantly higher for the adaptive compared to the 
whole-set models [mean 25.426 vs 24.114, t(99) = 5.438, p
< .0038]. The mean difference in , and ×F1 coefficient values 
between the adaptive and the whole-set models were also 
significantly different [  mean 7.612 vs 7.129, t(99) = 5.208, p
< .0038; ×F1 mean 0.016 vs 0.017, t(99) = 5.208, p < .0038], 
the magnitude of both these differences was 6.8%. 

5. Conclusion
On the basis of the simulations, it was decided that any 

small differences in the accuracy of results were immaterial 
compared to the benefits accrued by presenting the participants 
with a shorter experiment, 360 trials rather than 540. The 
adaptive sampling procedure as described above was therefore 
adopted for use in data collection in the study of the perception 
of English , , , , and Spanish , , . Individual 
participants took between 20 and 40 minutes to complete the 
perception experiment, and participant retention was very high: 
of the 95 participants who were asked to participate in two or 
more experiment sessions (e.g., one experiment giving English 
responses and one experiment giving Spanish responses to the 
same stimuli), only 3 dropped out after the first session.  

The best fitting logistic regression model for the data in the 
study was not restricted to the linear model used in the selection 
of stimuli to resample: For two groups of first-language Spanish 
listeners (a monolingual and a bilingual group), the best fitting 
model for their Spanish vowel category responses had F1
coded as three discrete levels. This allowed for a non-linear 
relationship between VISC and the model’s predictions for 
Spanish vowel category responses. 
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It may be possible to increase the relative reduction in the 
ber of stimuli sampled, particularly in experiments with the 
e number of dimensions, but with a higher stimulus density 
greater maximum number of samples per stimulus. An 
itional reduction could be achieved by running the initial 
s on a low density matrix, then switching to a high density 
trix using furthest from 0 or 1 stimulus selection. 

6. Acknowledgements 
Thanks to Bronwen G. Evans, Paul Iverson, Terrance M. 
rey, and two anonymous reviewers for comments on earlier 

sions of this paper (any errors or shortcomings remain the 
onsibility of the author). This work was supported by the 
ial Sciences and Humanities Research Council of Canada. 

7. References
Levitt, H. “Transformed up-down methods in psycho-
acoustics”, J. Acoust. Soc. Amer., Vol. 49, 1971, p 467–477. 
Evans, B. G., and Iverson, P. “Vowel normalization for 
accent: An investigation of best exemplar locations in 
northern and southern British English sentences”, J. Acoust. 
Soc. Amer., Vol. 115, 2004, p 352–361. 
Morrison, G. S., L1 & L2 production and perception of 
English and Spanish vowels: A statistical modelling 
approach. Doctoral dissertation, University of Alberta, 2006. 
Nearey, T. M., and Assmann, P. F. “Modeling the role of 
vowel inherent spectral change in vowel identification”, J. 
Acoust. Soc. Amer., Vol. 80, 1986, p 1297–1308. 
Haberman, S. J., Analysis of Qualitative Data. Vol. 2, 
Academic Press, New York, 1979. 
Nearey, T. M. “The segment as a unit of speech 
perception.”, J. Phonetics, Vol. 18, 1990, p 347–373. 
Nearey, T. M. “Speech perception as pattern recognition”, J. 
Acoust. Soc. Amer., Vol. 101, 1997, p 3241–3254. 
Table 1. Comparison of error scores and coefficient values across sampling procedures

Sampling Procedure       
Whole-Set Adaptive Difference    

Error
or

Coefficient Mean Mean Mean (sd) % t(99) p
SAEP 6.813  6.793 0.020 (0.426) 0.3 0.471 .6386   

34.113 32.923 1.190 (1.349) 3.5 8.823 .0000 **  
7.141 7.074 0.068 (0.906) 0.9 0.748 .4562   
8.147 8.181 0.034 (0.792) +0.4 0.426 .6708   

×F1 0.077 0.074 0.003 (0.003) 3.6 10.047 .0000 **  
×F1 0.007 0.007 0.000 (0.002) 2.0 0.850 .3975   
×F1 0.012 0.012 0.000 (0.001) 1.8 1.742 .0846   

× F1 2.028 1.939 0.089 (0.164) 4.4 5.461 .0000 **  
× F1 1.510 1.486 0.025 (0.137) 1.6 1.802 .0746   
× F1 3.445 3.384 0.061 (0.189) 1.8 3.217 .0018 **  
×dur 0.037 0.036 0.001 (0.006) 3.3 2.020 .0461 *  
×dur 0.020 0.021 0.001 (0.004) +3.3 1.612 .1101   
×dur 0.044 0.045 0.001 (0.005) +1.2 0.999 .3202   

* significant at  = .05, ** significant at  = .0038 equal to .05 after a Bonferroni correction for 13 tests 
% Percentage differences indicate differences in magnitude which are towards zero if negative and away from zero if positive 
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