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Abstract

This paper presents an approach for incorporating prosodic knowl-
edge into the language modelling component of a speech recog-
niser. We formulate features for a maximum entropy language
model which capture various aspects of the relationships between
prosody, syntax and the spoken word sequence. Maximum entropy
is a powerful modelling technique, and well suited to modelling
prosodic information. Tests conducted on the Boston University
Radio Speech Corpus using this model showed improvements in
perplexity, and n-best rescoring results also demonstrated small
but statistically significant gains.
Index Terms: language modelling, prosody, speech recognition.

1. Introduction
Prosody typically refers to the suprasegmental characteristics of
speech, such as intonation, rhythm and stress, which are used to
communicate structural information about an utterance. The do-
main of prosodic features is quite broad, and ranges from the syl-
lable up to whole utterances and discourses. In the speech signal,
the acoustic properties considered to be the dominant correlates of
prosody are fundamental frequency, energy and duration.

There has been an increasing interest in the use of prosody as a
knowledge source for spoken language processing systems, how-
ever, it is still an area largely confined to research. One reason for
this is that the nature of prosody is still not well understood. While
it is generally accepted that prosody plays an important role in hu-
man perception of speech [1], it has yet to be fully exploited in
automatic speech systems. This is, in part, due to the large number
of functions prosody serves. In addition to conveying linguistic
information, such as syntax and semantics, prosody also contains
paralinguistic effects like emotion and physiological characteris-
tics. When dealing with automatic speech recognition, these par-
alinguistic features carry little to no meaningful information, but
isolating relevant features is a difficult task. A recent trend in auto-
mated speech processing systems employing prosody has been to
extract large sets of raw features from speech data, which can then
be used directly in a variety of statistical models [2, 3]. This is a
sensible approach, as it enables fast, automatic processing while
allowing the model to choose appropriate features, however, it is
not without it’s share of problems. There are a large number of
factors which can influence the prosodic manifestation of an ut-
terance, and this variability can complicate the task of reliably ex-
tracting prosodic parameters. Combining prosodic models with
existing systems provides yet another challenge to overcome. For
example, the Hidden Markov Model (HMM) framework of most
acoustic models operates only on local information at the frame
level (typically in the order of 10ms), and there are no clear meth-
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for incorporating suprasegmental prosodic features.
Despite the difficulties outlined above, prosody has been suc-
fully incorporated into speech systems in a variety of ways.
e examples include topic segmentation [4], disfluency detec-
[5], speaker verification [6] and speech recognition [7, 8]. A
mon approach to employing prosody in speech recognition
understanding systems has been to model the dependence be-
n prosody and syntax. Veilleux et al. [9] used prosodic models
d on prominence and break features to score syntactic parses
ypotheses in a speech understanding system. In Stolcke et
7], the recognition task of finding the optimal word sequence,
, from standard acoustic features A, was formulated as:

W ∗ = arg max
W

p(A|W )p(W, S)p(F |W, S) (1)

language model component was augmented with hidden
ts (sentence boundaries and disfluencies), S, which were
elled with prosodic features, F . In similar work, Chen et
[8] used Explicit Duration HMMs to include prosodic fea-
s into the acoustic modelling process, and combined these with
odic bigram language models to create a fully prosody depen-
recogniser.

Following this approach, we propose to model relationships
een prosody and syntax in our work. These dependencies are
elled in a language model, as this appears to be the best way
present syntactic and suprasegmental information. Also, lan-
e models can be easily coupled with acoustic models through

use of n-best or lattice rescoring. We have chosen to use the
imum entropy model for this task for the following reasons:

• Maximum entropy models are a well understood modelling
technique, and many efficient algorithms exist for parame-
ter estimation.

• Maximum entropy models are very flexible in that informa-
tion from multiple knowledge source with differing charac-
teristics can all be modelled in a consistent manner.

• The maximum entropy principle is especially applicable to
this work. Given the lack of a clear understanding of the
relationship between prosodic features and linguistic units,
it is advantageous to have a framework which makes no
assumptions about the data beyond what is explicitly mod-
elled.

The layout of the remainder of this paper is as follows. In
ion 2, we describe the approach used to incorporate prosodic
rmation into a maximum entropy language model. Section 3
ils the experiments and results, and conclusions are provided
ection 4.
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2. Method
This section provides a brief overview of the maximum entropy
modelling technique used in this study, as well as an introduc-
tion to the corpus. We then describe the features to be used in
the model.

2.1. Maximum Entropy Model

A whole sentence maximum entropy (WSME) model [10] models
the probability of a sentence s as:

p(s) =
1

Z
p0(s) exp

(∑
i

λifi(s)

)
(2)

where Z is a normalisation constant, p0(s) is an initial distribu-
tion (usually based on an n-gram model) and the λi’s are real val-
ued parameters of the model. The features, fi(s)’s, are arbitrary
functions of s subject to the constraints:

Ep[fi] = Ki (3)

Typically, the values of the Ki’s are chosen such that they repre-
sent the empirical expectations of the features in a training corpus.
Fitting the model involves finding the set of λi’s which minimises
the Kullback-Leibler divergence between the model p and the ini-
tial distribution p0:

arg min
p∈P

D(p0‖p) = arg max
p∈P

∑
s

p0(s) log p(s) (4)

where P is the set of all models with exponential form. This can
be solved either iteratively [11] or with standard constrained opti-
misation methods.

This form of model provides great flexibility, as the fi(s)’s
can be any computable property of a sentence, allowing for infor-
mation from multiple knowledge sources to be incorporated in a
consistent manner.

Maximum entropy models, like other maximum likelihood
models, are subject to over-training. As the number of features
used in the model increase, the model becomes more tightly con-
strained to the training sample and loses its ability to generalise. In
order to alleviate this, some of the probability mass can be redis-
tributed by smoothing. The most common smoothing technique
for maximum entropy models is to apply a Gaussian prior over
the model parameters, and perform maximum a posterior optimi-
sations performed. This effectively changes the objective function
in Equation (4) to:

∑
s

p0(s) log p(s) − 1

2σ2

∑
i

λi
2 (5)

where the second term penalises models which diverge from the
initial distribution.

2.2. Corpus

Training a statistical model such as the WSME requires a large
amount of data. The Boston University Radio Speech Corpus [12]
was selected for this experiment as it is one of the most widely
available corpora developed for research into prosody. The corpus
contains recordings of radio news broadcasts from three female
and four male speakers, all of whom were professional radio an-
nouncers. It is suggested that professional speakers use clearer and
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H* 6678
!H* 1966

L+H* 2080
L+!H* 547
H+!H* 540

L* 509
L*+H 41

no accent 11764

Table 1: Number of pitch accents in training corpus.

e consistent prosodic structure [12], making this data suitable
analysis and use in an automated system. All utterances are
pled at 16kHz, and a subset of the data is annotated with ortho-
hic transcriptions, phonetic alignments, part-of-speech (POS)
from the Penn Treebank tagset [13] and prosodic labels. The
odic transcriptions follow the Tones and Break Indices (ToBI)
conventions for American English. The intonational events

ked by ToBI are divided into a break index tier and a tone tier.
break index tier describes the degree of juncture between each
of words and can take values from 0 to 6, where a break index
or higher represents a full intonation phrase boundary. Two

s of tones are described by the tone tier. Phrasal tones rep-
nt events associated with intonational boundaries, and pitch
nts represent events associated with accented syllables. The
c tones are H and L, describing high and low pitch events in
local pitch range, respectively, and more specific tone labels
onstructed from these.

Prosodic Features

goal of this study is to find suitable prosodic features which
be used to assist the language modelling task. We make use
e annotated data in the corpus, in particular the pitch accents.
n types of pitch accents are defined in the corpus. Peak ac-
s, H*, and low accents, L*, are the two basic tone types. The
H label represents a low tone on an accented syllable followed
sharp pitch rise, and L+H* represents a high tone target pre-
d by a pitch rise. The !H* tones are a downstep onto an ac-
ed syllable, and can be preceded by a low or high tone. The
ibution of words containing these pitch accents in the training
is shown in Table 1. Due to the very low rate of occurrence of
e accent types, the set of labels were collapsed into two cate-
es only - presence and absence of an accent. We also reduced
k index labels in a similar manner, defining the presence of a
dary by a break index value of at least 4. Using these simpli-

ions, transcriptions were generated such that each word was
ed with it’s POS, pitch accent and break index labels.

The approach we take to modelling prosodic information is
lar to [8] in that we model the relationship between prosody
syntax to acquire more robust estimates from limited data. The
wing features were included into the model:

• POS features: f(s) = # times the word and POS sequence
(wi−n, pi−n, . . . wi, pi) occurs in s. These features model
the co-occurrence of word wi with it’s assigned POS tag pi,
and effectively contain n-gram type information of POS-
dependent words. In our experiments, we have used uni-
gram and bigram features of this form.

• Break index features: f(s) = # times the word and break
index pair (wi, bi) occurs in s. These features model infor-



mation about words which are likely appear at intonational
phrase boundaries.

• Accent features: f(s) = # times the POS and prosody se-
quence (pi−n, ai−n, . . . pi, ai) occurs in s. Like the POS
features above, these features model the relationship be-
tween a word’s POS tag pi and it’s accent label ai. Se-
quences of up to length three were modelled in this way.
The reason we do not include the word identity, wi, into
these features is because the pitch accents are not a reli-
able estimator given little contextual information. How-
ever, increasing context length in these features also greatly
increase the number of parameters, hampering the ability
to robustly estimate their expectations. It should be noted,
though, that even when wi is not explicitly included, the
model requires no assumptions of independence between
wi and ai to be made.

• Duration features: fw(s) = average duration of word w in
s, for all w in the training set. The final set of features we
used model word durations. Accentuation is correlated with
increased duration of the accented syllable, and these fea-
tures aim to capture information about this effect. Figure
1 plots the average durations of accented words against the
average durations of the unaccented forms of those words.
It can be seen that there is indeed an overall increase in du-
ration when a word is accented. We selected a subset of
these features which show the greatest variation in duration
between their accented and unaccented forms, by thresh-
olding on the value:

|ai − ui|
ui

(6)

where ai is the duration of the accented form of word wi,
averaged over all words in the training set, and ui is the av-
erage duration of the unaccented form of the word. Words
occurring fewer than three times were excluded from this
analysis. The duration plot of this subset of features is
shown in Figure 2.

3. Experimental Work
Experiments were carried out on a subset of the Boston University
Radio Speech Corpus comprising 399 utterances. Each utterance
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Figure 1: Durations of accented words vs unaccented words.
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ure 2: Durations of thresholded words selected for the model.

Model PP reduction (%) Accuracy (%)
trigram n/a 72.73
LM-A 3.1 73.26
LM-B 6.1 73.97

e 2: Perplexity and n-best rescoring results of maximum en-
y language models using POS features only (LM-A) and both
and prosodic features (LM-B).

partitioned into individual sentences for a total 31476 words in
sentences. 85% of the data were selected at random to form

ining set, while the remaining 15% made up the test set. A
am model using Good-Turing discounting was trained on the
ing corpus, and serves as the baseline. Two maximum entropy
els were trained using the features described in Section 2.3,
smoothed with Gaussian priors. The first model, LM-A, con-
d only the part-of-speech features, while the second model,
B, used all available features. We perform both perplexity
and word recognition tests on these models. The perplexity

ction ratio over the test set was estimated [15] as:

PPme(Te)

PP0(Te)
=

⎛
⎝ Z

#se

√∑
s∈T0

R(s)

⎞
⎠

#se
#we

(7)

re #se is the number of sentences in the test set Te, #we is
umber of words in Te and R(s) =

∑
i λifi(s).

The two language models were also applied to the rescoring of
st lists generated by a recogniser. The speech data was param-
sed into feature vectors consisting of 13 MFCCs along with
deltas and double-deltas. These were modelled by 5 mix-

Gaussians in 3-state triphone HMMs with no skips. A 100-
list was generated using this recogniser and the baseline tri-
, which was then rescored using the maximum entropy mod-
Both perplexity and word accuracy results are presented in

e 2. LM-A, using only POS features, had a 3.1% lower per-
ity than the trigram, and performing n-best rescoring improved
racy by a relative 0.73%, with a matched pairs test [16] giving
0.01. When prosodic features were included, in LM-B, per-

ity reduction over the baseline improved to 6.1%, and recog-
n accuracy increased to a 1.7% relative gain (p < 0.001).



Model Deletions Substitutions Insertions
trigram 124 817 241
LM-B 131 774 223

Table 3: Comparison of recognition errors between the trigram
and LM-B.

A more detailed breakdown of the results for LM-B is
presented in Table 3. From this, it is evident that the primary
source of improvements in LM-B was the reduction in substitution
errors. While these gains are the result of a combination of
features, we can identify some instances where specific features
have contributed to the correction. An example of a corrected
transcription is shown below.

trigram → ... when/WRB/u a/DT/a come/VBN/u ...
LM-B: → ... when/WRB/u they/PP/a come/VBN/u ...

In this scenario, the fragment ”when they come” is cor-
rectly selected due to the presence of the feature (pi = DT, ai =
a) in the original hypothesis. This feature has a very low
expectation, resulting in the model giving preference to alternative
hypotheses. Reductions in insertion errors were also present,
however, examination of the resulting transcriptions seemed to
indicate that the majority of these were side-effects of corrected
substitution errors.

4. Conclusions and Future Work
In this paper, we have presented an approach for incorporat-
ing prosodic knowledge into a language model. We have ar-
gued that language models, and whole sentence maximum entropy
models in particular, provide an appropriate framework for mod-
elling suprasegmental information. Some simple features were
developed for a WSME model which captured information about
prosodic, syntactic and lexical dependencies. Experiments per-
formed on the Boston University Radio Speech corpus demon-
strated a 6.1% reduction in perplexity over the baseline trigram
model, and n-best rescoring resulted in a 1.7% relative increase in
recognition accuracy. Although the gains are small, this experi-
ment highlights the flexibility of the WSME model. A myriad of
features beyond what was considered here could plausibly be ap-
plied with little to no modification of the modelling framework.
These features also need not be confined to prosody, as the only
requirement for features is that they be computable properties of
the sentence.

As mentioned earlier, the trend in this area of research has
been to use large sets of automatically extracted features. We
would also like to focus our efforts in this direction, as it opens
up many avenues for exploration with regard to potential features.

5. References
[1] Alex Waibel, Prosody and Speech Recognition, Morgan

Kaufmann Publishers, California, 1988.
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