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ABSTRACT

The vector-based spoken language recognition approach
converts a spoken utterance into a high dimensional vector,
also known as a bag-of-sounds vector, that consists of n-gram
statistics of acoustic units. Dimensionality reduction would
better prepare the bag-of-sounds vectors for classifier design.
We propose projecting the bag-of-sounds vectors onto a low
dimensional SVM output coding space, where each dimension
represents a decision hyperplane between a pair of spoken 
languages. We also compare the performances of the output 
coding approach and the traditional low ranking 
approximation approach using latent semantic indexing (LSI)
on the NIST 1996, 2003 and 2005 Language Recognition 
Evaluation (LRE) databases. The experiments show that the
output coding approach consistently outperforms LSI with 
competitive results.
Index Terms: spoken language recognition, vector space
model, multiclass classification

1. INTRODUCTION
Vector-based spoken language recognition (LID) [1] has 
emerged recently as an effective phonotactic approach. It is
different from the parallel PRLM method [2] in that it
represents a spoken utterance as a vector. In this approach, a
spoken document is represented by a bag-of-sounds vector,
similar to the document vector of a text document. A bag-of-
sounds vector is expanded in a high dimensional space by the
statistics of the acoustic units, such as the phone n-gram. In
this way, the vector-based approach translates the LID task
into a typical vector classification problem in pattern
recognition. Many advanced algorithms for vector
classification can then be readily applied. Therefore, one of 
the challenges is to handle the high dimensional vectors 
effectively. Latent semantic indexing (LSI), which uses the 
truncated singular value decomposition (SVD) as a low-rank 
approximation, has been studied for bag-of-sounds
dimensionality reduction [1]. Another established algorithm is 
linear discriminant analysis (LDA). It combines the features
of the original data so as to reduce the dimensionality of 
original data in a way that most effectively discriminates
classes [3][4].

In LDA, the problem of finding a linear discriminant
function is formulated as the problem of minimizing a 
criterion function. The common criterion function for
classification purposes is the classification error, the average
loss incurred in classifying the set of training samples. The
minimum squared-error (MSE), is one of the solutions to the
problem, by solving a set of linear equations. The procedure
involves all the training samples and assumes that within-
cluster scatter matrix is nonsingular. Recently, support vector 
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achines (SVM) have attracted much attention as an
lternative solution. First, in MSE type of solutions, we are 
ver concerned with the distributions of all the samples. In 
ontrast, a SVM system places a hyperplane in a high
imensional space so that the hyperplane has maximum
argin. Therefore, SVM is more interested in the decision

oundaries than the sample distributions themselves. 
econd, SVM relies on preprocessing of the samples to
epresent patterns in dimensions, typically much higher
han the original feature space. The idea is that, with an
ppropriate nonlinear mapping to a sufficiently high
imension, samples from two classes can always be
eparated by a hyperplane. SVM has shown to be an
ffective machine learning method for pattern
lassification in high dimensional spaces. Many attempts,
or instance, in text categorization [5] have been 
uccessful.

There are two typical tasks in LID, language
ecognition and language verification. The former is 
ormulated as a closed-set identification problem assuming
hat the test languages are known to the system. The latter
s formulated as an open-set problem where the test
anguages can be new to the system. In the former case, a 
ector-based, multiclass SVM system might serve the
urpose. However, in the latter, it is desirable to reduce the 
ag-of-sounds vector to a lower dimensional space so that
he traditional hypothesis test theory can be practically
pplied. In this paper, we will study a new approach to
imensionality reduction by using SVM with language
erification as the application. This paper is organized as
ollows. In Section 2, we briefly discuss vector-based LID
echnique. In Section 3, we propose using SVM for
imensionality reduction. In Section 4, we report 
xperiments on the NIST LRE databases. Finally we
onclude in Section 5. 

2. VECTOR SPACE MODELING
Suppose that we have an inventory of

1 2{ , ,... }FV V V universal acoustic units. As discussed in
6], an acoustic unit can be either a linguistically defined
hone or an acoustically defined unit. For each sound 
equence generated from the universal acoustic tokenizer,
e derive a spoken document vector from the n-gram of 

he acoustic units. Suppose that we have V acoustic units
n parallel phone recognizers, also known as PPR (see 
igure 1), each producing a sound sequence. We can
erive a large composite document vector by
oncatenating vectors resulting from the individual
hone recognizers, for instance, resulting in a bag-of-
ounds vector of 

F

F

1 1 ... F FV V V V dimensions in the 
ase of bigrams. In this way, the utterances for each
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language are represented as a collection of vectors. The LID 
task can be seen as a multiclass problem in the bag-of-sounds
vector space. Details of bag-of-sounds method can be found
in [1].

Figure 1: LID systems with parallel phone recognition
frontend and vector space modeling backend

3. CONTINUOUS OUTPUT CODING 
A bag-of-sounds vector typically has a dimensionality of tens
of thousands given a reasonable size of acoustic inventoryV .
To effectively apply pattern classification techniques, it is
desirable to reduce this dimensionality to less than a few
hundreds. Dimensionality reduction is typically achieved
through the linear combinations of samples in their original
space. Linear combinations are particularly attractive because
they are simple to compute and analytically tractable.

3.1 Latent semantic indexing
A technique that significantly reduces the feature dimension
is the use of SVD. A collection of bag-of-sounds vectors can
be arranged in the form of a K D  term-document matrix,
H.  We can decompose the K D  term-document matrix
into the product of three matrices: , where is aTH USV U
K R   left singular matrix with rows , where 1 ,

is a  diagonal matrix of singular values, with

; and V is a 

ku k K
S R R

1 2 ... 0Rs s s D R  right singular 

matrix with rows , where 1 . Both the left and the
right singular matrices, U and V, are column-orthonormal.

dv d D

If we retain only the top Q singular values in matrix S and
zero out the other (R-Q) components, the feature dimension
can be effectively reduced to Q , which is often much smaller
than R. By doing so, the three matrices are much smaller in
size than those in , which greatly reduces the 
computational requirements. We can therefore compare
spoken documents in this new Q dimensional space. Any
document or query represented by a vector in the original K-
dimensional space can now be transformed into a Q-
dimensional vector. These reduced vectors are then used to
train all language classifiers and perform LID. Given a test
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poken document x , using the left singular matrix U, we
an construct a document vector  in the Q-dimensional
pace,

y

1 t t
LSIUSy x W x

x

C

C

(1)

This approach is known as latent semantic indexing
LSI), which is based on the assumption that there is some
nderlying latent semantic structure in the term-document 
atrix that is corrupted by the wide variety of terms used

n the documents. The LSI dimensionality reduction
llows us to retain semantic structure in the low 
imensional space. However, there is no reason to assume
hat these components must be useful for discriminating 
ifferent classes. 

.2 Continuous output coding
n LDA, we project a vector  from a K-dimensional
pace to a C-dimensional space by C discriminant
unctions [4] in the directions that are efficient for class
iscrimination.

1,...,t
i iy iw x (2)

f we consider as components of a vector y and the 
eight vectors as the columns of a matrix

iy

iw K

LDAW , then the projection can be written as a single matrix
quation

t
LDAy W x (3)

LDAW is similar to LSIW  except that it is achieved by
olving C Fisher linear discriminants [4]. As a 
ariant of LDA,  SVM has been shown to be effective in
eparating high dimensional vectors in 2-class problems,
n which SVM effectively projects the high dimensional
ector  into a scalar value ; Suppose that we 
ave a collection of L support vectors, a SVM is 
onstructed from the sums of a kernel function k

(J w )i

)x (y f x

( , ) .

1
( ) ( , )

L

l l l
l

f t k dx x x   (4) 

here are the ideal outputs, andlt 1

L
l ll
t 0 0l .

or a linear kernel , Eq.(4) can be easily
ewritten as 

( , ) t
lk x x x xl

1

1

( )
L

t
l l l

l
tL

t
l l l c

l

y f t d

t

x x x

x d x w x
(5)

here [ ,0,...,0]dd . Interestingly, once we train a SVM,
e can collapse all the support vectors into a single

eight vector 
lx

1

L
c l l ll

tw x d  similar to the weight
ectors in Eq.(2). If we see as the columns of aiw cw

K C matrix , then the projection can be written asSVMW
t
SVMy W x (6)

SVMW is similar to LDAW or LSIW  except that it is
onstructed by C SVM decision hyperplanes. Each SVM is
epresented by a weight vector . In this way, the Ccw



SVM outputs form a reduced dimensional space, which is 
also known as output coding [7].

Output coding, also known as error-correcting output 
coding, is a general method for solving multiclass problems
by reducing them to multiple binary classification problems
[7]. Typically, output codes are defined as discrete codes of 0 
and 1. Using SVM output as the output coding bit b, we have 

 if , and otherwise. Let’s describe the
technique of output coding through a simple example: the
task of classifying a vector into the 

1b ( ) 0f x 0b

4M classes. Each
language is assigned with a C-bit vector with ,
for example, Chinese - 0110110001, English - 0001111100,
French -1010101101 and Korean - 1000011010.

2logC M

A bit in the bit-vector represents the output of an
individual SVM. The bit-vector is an output collection of N
individual SVMs. This is also known as an ensemble
classifier, which makes collective decision based on a
number of individual decisions. Using output coding, a class 
is encoded by a centroid code. The ensemble classifier is able
to correct some errors that individual classifiers make, thus 
also known as error-correcting output coding. The greater the
distance between the centroid codes, the better
discriminability that a multiclass classifier has. In general, 
larger code size leads to better performance. Some recent
work improves the performance of output coding by relaxing
the output codes from discrete coding to continuous coding 
[7]. In practice, Eq.(6) is implemented like this. First, we
train a set of C independent SVM classifiers

, then we represent each of training or
test utterance  as a vector of C real-valued SVM outputs

, known as continuous output
coding (COC). 

1 2{ ( ), ( ),..., ( )}Cf f f
x

1 2{ ( ), ( ),..., ( )}Cf f fy x x x

3.3 Designing of output codes
Now the question is how to construct the C SVMs. A natural 
way is to construct C independent SVMs, each deciding a
target language vs. the rest. In doing so, we denote the 
samples labeled with the target category as the positive
samples, and the rest as the negative samples. The code size
of the so defined output code vector equals the number of
classes M. In discrete coding, for an ensemble of binary
classifiers, truly meaningful values of code size C lie in the
range . A code size of

cannot even assign a distinct bit-vector to each
label. At the other extreme, a code of size 
must contain duplicate columns, which means two individual 
classifiers learning the same task. Studies show that a code
size of  gives reasonably good performance,
while increasing code size improves performance at the cost
of higher computational need [7]. Note that, with the same
code size, COC consistently outperforms discrete coding in
multiclass classification tasks. We adopt COC by having
pairwise SVM classifiers as the individual classifiers.
Suppose that we have M language categories, we build 

classifiers, with each discriminating a
language pair, resulting in a COC vector of

 dimensions.

2[log ,(2 1) / 2]MM

2logC M

M

2

2

work, consider

(2 1) / 2MC

210logC

( 1) /M M

( 1) /C M M
To understand why one might expect our COC coding to

 the problem of learning to classify three
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llabic

anguages. Each language pair has its distinctive
istinguishing characteristics as follows: 

Tonal Sy
Chinese yes yes
Japanese no yes
English no no

f we build (3 1) / 2C 3 3 SVMs, each
nguage pair, one

to be de

4. EXPERIMENTS
e follow the  LRE tasks1.

g sets came from three corpora [6], namely: (i)
he

.

iscriminating a la can expect the
hinese-Japanese classifier to learn the strong association
etween tonal characteristics and Chinese, in order to
ifferentiate it from Japanese. Likewise, the Japanese-
nglish classifier will learn the strong association between
 syllabic structure and Japanese. During the training of a
hinese-Japanese SVM classifier, we take Chinese data as

he positive samples and Japanese data as the negative
amples, leaving the English data out. The same principle 
pplies to the training of all SVMs. To the Chinese-
apanese SVM, when a Chinese bag-of-sounds vector is
resented, the SVM is trained to derive a positive value
( ) 0f x . In contrast, the SVM will respond to a Japanese

th a negative value ( ) 0f x . The SVM output 
alue for an English vector is cided by the SVM 
epending on how the SVM sees English from the point of
iew of the Chinese-Japanese decision hyperplane.

ector wi

experiment setup in the NIST
n the 1996 and 2003 tasks, 12 known languages are
ested, with Russian being the out-of-language (OOL) in 
he 2003 test. In the 2005 task, 8 languages, a subset of the 
996 and 2003 languages, are tested, with German being 
he OOL.

Trainin
3-language IIR-LID database; (ii) the 6-language OGI-

S (Multilanguage Telephone Speech) database; and (iii)
he 12-language LDC CallFriend database. Both IIR-LID
nd OGI-TS are telephone speech with phonetic
ranscriptions. They are used for acoustic modeling. In 
ddition, the CallFriend database was used for
onstructing bag-of-sounds vectors and designing
lassifiers [6] It contains telephone conversations of the
ame 12 languages as are in the 1996 and 2003 NIST LRE 
asks, with 3 languages having 2 accented versions. As a
esult, we have 15M  (see Figure 1). The three
atabases are indepe f each other.

In NIST LRE tasks, there are 3 d
ndent o

ifferent duration
ett

.1 LSI vs COC
paring two dimensionality reduction

pproaches, namely LSI and COC in the language

ings, 3, 10, and 30 seconds. The 1996 evaluation data
onsist of 1,503, 1,501 and 1,492 sessions of 3, 10, and 30 
econds, respectively. The 2003 and 2005 evaluation data 
onsists of 1,280 and 3,662 sessions per duration. In
lassifier design, each conversation in the CallFriend
atabase is segmented into overlapping sessions, resulting
n about 12,000 sessions for each of 3,10, and 30 seconds
uration per language.

e begin by com

1 http://www.nist.gov/speech/tests/index.htm



verification, where each utterance is evaluated against a
hypothesized language to produce a confidence score. We
report equal error rates (EER%) on evaluation data. The
confidence score can then be compared with a threshold, if
needed, for decision making. The yes decision accepts the
hypothesized language as the detected language, while the no
decision rejects it.

Given an acoustic inventory {48,39,52,51,32,36}V  [6]
with 6F parallel phone recogn

nds vector of 11,708 dime
uttera After dimensionality reduction, we construct
Gaussian mixture models (GMM) for each target language
m  and their competing languages m . As such, for each

tar t language, we build a pair of GMMs { , }m m . For
uage verification, we need to evaluate the probability of a 

hypothesized language model m for a given test utterance
O, ( | )P m O . However, the output of a GMM system
gives ( | )P O m . By making the assumption that all
lang equiprobable, we approximate the posterior
probab | )O  by Bayes’ theorem:

log ( | ) log ( | ) log ( | )P m O P O m P O m   (7) 
Eq.(6) gives log-likelihood score b

izers, we derive a bag-of-
sou nsions [6] for each input 

lang

a relative etween the target
language and its competing languages. Int

em
 vectors to

 dime

vectors to 50, 105 and

Table

y has gone through many
published in the 

nce.

ge

uages are
ility (P m

uitively,
log ( | )P m O  reflects how the target model overtakes the
competing models with respect to the input utterance, thus

e confidence score of a test utterance O being

hypothesized as m . A series of systematic experiments on 

the GMM size suggest us 512 mixtures for m  and 64

mixtures for m because m has much more training data

than m  has in our experiments.
For a syst of M  target languages, the COC

reduces the 11,708-dimension bag-of-sounds

serving as th

15

105 15 (15 1) / 2 nsional vectors. To establish
fair comparison, we also apply LSI to reduce bag-of-sounds

200 dimensions, from which we 
further train GMM models { , }m m  for each language.
Without loss of generality, we only test 30-sec samples in this
experiment as reported in 1. Note that COC
consistently outperforms LSI approach across all the settings.
This can be explained by the fact that COC describes the
“difference” between the languages while LSI describes the
“distribution” of data in general.

4.2 Overall performance comparison
Language recognition technolog

C

years of evolution. Many results have been
literature [8] on the NIST 1996, 2003 and 2005 LRE tasks,
which provides good benchmarks for new technology
development. We further validate our COC approach by
carrying out comprehensive benchmarking across different 
durations, namely, 3, 10 and 30 seconds as reported in Table
2, which are among the best reported results on the NIST 
databases [8]. COC consistently outperforms PPRLM
approach as reported in [6]. The COC vector-based
subsystem has contributed to the final submission to NIST
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6/03/05 30-sec tests

S

005 LRE representing IIR site. 

Table 1. EER% for NIST 9

ystem 1996 2003 2005
LSI Q=50 4.29 4.84 7.47

LSI Q=105 3.63 4.83 7.35
LSI Q=200 3.09 4.36 6.58
COC C=105 2.75 4.02 5.78

Table 2. EER% IST 96 using C

Sy d

for N /03/05 OC

stem 30-second 10-second 3-secon
1996 2.75 8.23 21.16
2003 4.02 10.97 21.66
2005 5.78 12.48 24.23

5. CONCLUSIONS
e have prop ensional

eduction. The t COC is an
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