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Abstract
In a microphone array system, feature combination in the MFCC
domain can improve speech recognition accuracy. Multiple mi-
crophones provide different feature parameters such as MFCCs
even if they have similar speech and noise signals, because of the
phase difference and transmission characteristics. In this paper,
we investigate how the recognition performance changes when we
average multiple MFCC feature vectors. In addition, we extend
Hypothesis-Based Feature Combination, which we formerly pro-
posed for dual-microphone systems, to multi-input systems. Ex-
perimental results show that variance re-scaling is necessary when
we combine multiple inputs with Cepstral Mean Normalization
(CMN), in both MFCC average and HBFC. However, we can ob-
tain better results without variance re-scaling if we use Mean and
Variance Normalization (MVN) with MFCC average or HBFC. In
the experiments using the database collected in a real automotive
environment, HBFC-MVN reduced 22% of the recognition errors
from the baseline single-microphone system.
Index Terms: robust speech recognition, feature combination, mi-
crophone array.

1. Introduction
Speech recognition accuracy in noisy environments can be im-
proved by utilizing multiple speech inputs. A microphone array
is used to collect multiple inputs, and there have been many stud-
ies of array signal processing to achieve better recognition per-
formance. In this paper, we investigate various array processing
techniques, aiming at robust speech recognition for practical user
interface in automotive environments.

In most of the previous studies, speech (or speech feature) was
enhanced in the time domain or the power spectral domain, and
there were two assumptions related to these two domains. First,
it was assumed that the interfering noises are directional and the
observation process can be modeled as a linear combination of
the delayed signals. Independent Component Analysis (ICA) is a
typical solution for this model, which can separate multiple sig-
nals such as the voices from the driver and passenger seats using
statistical independence of the signals. However, automotive ap-
plications are surrounded by various noises from outside of the
vehicle, most of which should be treated as non-directional noise.
In addition, inside of the vehicle is highly reverberant, and the in-
dependence requirement is not satisfied. The second assumption
of the standard array processing is that the phase of the speech sig-
nal and the phase of the noise are not correlated and cancel out
each other in the calculation of the power spectrum. Two-channel
spectral subtraction [1] is a typical solution based on this assump-

tion.
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However, as Droppo et al [2] pointed out, neglecting the cross
of the speech and noise signals is too naive an approximation
if they are uncorrelated. Moreover, it is impossible to main-

the completely equal frequency characteristics of the micro-
es. Therefore, the power spectra of the observed signals by
ultiple microphones are not necessarily identical each other
if they share the same power spectra of the speech and noise.

ce we have various cepstral (MFCC) features corresponding
e multiple microphones, and it is worth combining them in
epstral domain. In fact, the Gaussian statistical nature of the
tral features of speech suggests the isotropic nature of the cep-

space, and approves the effectiveness of feature combination
e cepstral domain. Moreover, since the speech can be mod-
precisely in the cepstral domain using hidden Markov mod-

HMMs), we can take advantage of the prior knowledge about
ch if we work in the cepstral domain.
In [3], we studied MFCC combination of the dual-microphone
m, and proposed Hypothesis-Based Feature Combination. In
paper, we extend it to the multiple input system, where the
ghtforward extension may cause recognition accuracy degra-
n, and then attention must be paid to the variance scaling
lem. We analyze the relationship between feature compen-
n and feature combination algorithms, and present how the
gnition accuracy can be improved by the proposed method.

2. MFCC average and variance
normalization

is section, we start with a typical mixture model of speech and
e, which is described as

Yi(k)|2 = |X(k)|2 + |N(k)|2 + |X(k)||N(k)|cosθki (1)

re X(k) and N(k) are the k-th spectral component of the
ce and noise signals, Yi(k) is the k-th spectral component of
ignal observed by the microphone i, and θki is the phase dif-
ce of X(k) and N(k) observed by the microphone i. If we

ect the cross term of eq. (1), spectral subtraction:

|X̂i(k)|2 = |Yi(k)|2 − |N̂(k)|2 (2)

re |X̂i(k)|2 and |N̂(k)|2 are the estimation of the source and
e signals, is a good approximation. However, eq. (1) suggests
we should have the same MFCC values for all microphones if
have the same values of |X(k)| and |N(k)| (far-field approx-
ion). The experimental finding that the multiple microphones
different MFCC values leads us to the conclusion that we can-
eglect the cross term. Accordingly, we admit that the multiple
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inputs provide different feature vectors, and we propose to com-
bine them to obtain better MFCC sequence for speech recognition.

In [3], we showed that we can improve the speech recogni-
tion accuracy simply by averaging two MFCC sequences of the
dual-microphone system. A straightforward extension of MFCC
averaging to the multiple-input system is:

xave =
1

N

XN

i=0
yi (3)

where yi = {yitd|1 ≤ t ≤ T, 1 ≤ d ≤ D} is the MFCC feature
vector made from the observed signal by the i-th microphone, and
xave is the corresponding combined feature vector. N is the num-
ber of microphones, T is the number of time frames, and D is the
dimension of MFCC used.

However, this simple averaging does not work well, especially
in the case of large N . Taking into account that the arithmetic
mean in the MFCC domain is equivalent to the geometric mean in
the power spectral domain, a general equation

(
YN

k=1
xk)1/N ≤ 1

N

XN

k=1
xk for any positive {xk} (4)

indicates that the average of many MFCC values tends to become
smaller than expected, especially if the observed MFCC values
have largely different values. Our preliminary experiments showed
that a simple MFCC average of many microphones tends to output
the same hypothesis, which is also outputted if we multiply a small
constant α (< 1.0) to all MFCC values. We will later examine if
such degradation can be avoided by applying appropriate scaling
of the MFCC values.

3. Hypothesis-Based Feature Combination of
Multiple Inputs

As the huge success of the speech recognition research indi-
cates, the speech signal can be modeled precisely in the cepstral
(MFCC) domain. Working in the MFCC domain has an advan-
tage that we can use the prior knowledge about the speech model
in a framework of the feature combination. Previously, we pro-
posed Hypothesis-Based Feature Combination (HBFC) for dual-
microphone systems, in which the speech model is used to synthe-
size an MFCC sequence from the recognition hypothesis.

In [3], we treated the two input signals evenly and compared
the results obtained by decoding one signal or the other. How-
ever, in this paper, we assume that the microphone array is linear
and the user is sitting near the center of the array, and the central
microphone provides near-optimal signal. Therefore, we decode
the signal obtained by the central microphone, and mix the syn-
thesized feature from the hypothesis with the inputs of the other
microphones. Figure 1 shows the schematic diagram of the Multi-
input HBFC described in this paper.

The procedure to synthesize the MFCC sequence is as follows.
First, the input feature of one channel is decoded in a standard
manner to obtain a recognition hypothesis. Next, the HMM state
sequence corresponding to the hypothesis is force-aligned with the
input feature. For each pair of the HMM state and the input fea-
ture, the likelihood values are compared for each Gaussian mix-
ture, and finally the most likely Gaussian is selected for each state.
After that, the synthesized feature can be obtained simply by con-
catenating Gaussian means of all selected Gaussian mixtures.

After the synthesized feature xsyn was obtained, it is mixed
with the average of the inputs of the other microphones, by linear
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re 1: Schematic diagram of Multi-input Hypothesis-Based
ure Combination.

bination with a fixed weight parameter w as follows.

xHBFC = wxsyn + (1 − w)xave

= wxsyn +
1 − w

N − 1

XN−1

k=1
yk (5)

, we used the suffix 0 for the central microphone and suffix 1
− 1 for the other microphones.

4. Experimental Results
Database and setup

arried out several sets of experiments to evaluate various im-
entations of MFCC average and HBFC. The evaluation data
recorded in a real car which was running on urban roads. The
base is made of 3620 utterances in total, uttered by 18 speakers

ale and 7 female). The task is 152 Japanese POI (points of
est) isolated word recognition (IWR) to input the destination
e navigation system. The speaker sat in the passenger seat,
was prompted each time to speak by a beep. Each utterance
roughly endpointed by a fixed time-window from the beep po-
n, so the utterance contains relatively high-percentage of the
speech segment. The utterances were recorded by a micro-
e array, which is made of seven linearly located microphones.
e microphones were numbered from 1 to 7 in the direction
the driver’s side to the window side, and placed at intervals
cm, 5cm, 5cm, 5cm, 5cm, and 10cm. The average SNR of all

rded data was estimated as -3.4dB, but most of the noise ex-
n lower frequency range, and the estimated SNR increased to
dB after applying a bandpass filter with a 400Hz-5500Hz pass
. The variance of the estimated SNR over the microphones
smaller than the estimation error.
For the recognition experiments, we prepared our original de-
r and two acoustic models. Each acoustic model was trained
g phonetically balanced sentences recorded in a quiet room,
en by 160 speakers (80 male and 80 female), 16 hours in
. The first and second acoustic models were trained with
ance-based CMN and MVN respectively. Our acoustic model
phone-based (based on 34 Japanese phonemes), made of 1614
s with 6 mixtures each, and compressed by subvector quanti-
n with 128 codewords in each of 9 subspaces. As the feature
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Figure 2: Baseline performance of each single microphone.

vector, 13 MFCCs including C0 and their first and second-order
time derivatives were extracted every 10ms from the 16kHz sam-
pled wave data.

Figure 2 shows the results of the baseline experiments. Since
the task is IWR, the recognition rate was simply defined as the ra-
tio of the correctly recognized utterances to the total utterances.
In the baseline experiments, we tried four feature normalization
algorithms: CMN, MVN, Histogram Equalization (HEQ) [4],
and Delta-Cepstrum Normalization (DCN) [5]. In all cases, nor-
malization was applied on the whole utterance basis (off-line).
Among these four normalization algorithms, CMN achieved the
best recognition rate, 87.32%, using the central microphone. DCN
and MVN were close to CMN, and HEQ was less accurate. It was
unexpected that microphone #5 and #6 achieved better recognition
rate than the central microphone (#4), but the difference was rather
small. The average of all microphones had the same tendency of
the order of CMN, DCN, MVN, and HEQ, but the order was not
kept in some specific microphones (#6 and #7).

We also tried a simple delay-and-sum beamformer and ICA
[6]. In the delay-and-sum beamformer experiments, since the po-
sition of the speaker is almost fixed, we calculated the delay be-
tween microphones geometrically. The original 16kHz sampled
data of 7 microphones were first upsampled to 64kHz, the fixed
delays (5 pts for #1 and #7, 1 pt for #2 and #6, and nothing for
#3, #4, #5) were applied, and then all data were added and down-
sampled to 16kHz. Using this beamformer, we obtained 88.20%
recognition rate, which is slightly better than the baseline result.
On the other hand, ICA could not improve the recognition rate at
all, either applied in the time domain or in the frequency domain,
and either using two (#3 and #5) or all microphones

4.2. MFCC average

Next, we averaged 7 MFCC feature vectors at each frame after
feature normalization by CMN or MVN, and decoded them. The
results were 83.15% (CMN) and 88.87% (MVN). Since the fea-
ture vectors after CMN have larger variety over microphones, their
variance tends to become small by taking the average. It was
proved by the fact that 6.63% of the utterances were recognized
as the POI “Tourist Hotel” though only 0.55% of the utterances
were that word and only 1.30% were recognized as that word in
the baseline experiment.

To avoid such effect, we applied re-scaling of the MFCC pa-

Figu
and
out v

Tabl
and

# o

rame

Sinc
re-sc
chan

bette
89.7
the a
near
ave w
90.0

know
vant
rate

cont
crop
thos
the e
weig
crop
by a
sults
lowe
MFC
tral m

2576

INTERSPEECH 2006 - ICSLP
 82

 84

 86

 88

 90

 92

 0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

R
ec

og
ni

tio
n 

ra
te

 (
%

)

variance scaling factor α

delay-sum(CMN)

CMN-single
MVN-single

CMN-aveMVN-ave

re 3: Experimental results of MFCC average. CMN-single
MVN-single are the recognition rates of microphone #4 with-
ariance re-scaling

e 1: Experimental results with various microphone numbers
weights

Recognition rate (%)
f mic. weights CMN (α=1.3) MVN (α=1.0)
1 79.81 86.22
3 equal 89.01 87.60
5 equal 89.72 88.34
7 equal 89.78 88.87
7 1:2:3:4:3:2:1 89.67 88.59
7 1:4:9:16:9:4:1 89.59 88.20

ters.
zave = αxave (6)

e the cepstral mean was already subtracted, it is equivalent to
aling of the variance. Figure 3 shows how the recognition rate
ges when we sweep the scaling factor α.
The average of 7 MFCC feature vectors after CMN provides
r recognition rates if we use α > 1.0. The best value of
8% was obtained with α = 1.30 and α = 1.35. Contrastingly,
verage of 7 MFCC feature vectors after MVN has the peak
α = 1.0, which provided the higher recognition rate of MVN-
ithout variance re-scaling. The best value of MVN-ave was

0% with α = 0.85.
Since it is impossible to know the optimal value of α without

ing the correct words (like supervised adaptation), it is an ad-
age of MVN-ave that we can obtain near-optimal recognition
with α = 1.0.
We also checked how the microphones with lower accuracy
ribute to feature combination. As shown in Fig. 2, some mi-
hones have lower input quality, and it is not certain if adding
e microphones improves the recognition rate. Table 1 shows
xperimental results with various microphone numbers and
hts. The top row shows the recognition rate obtained by mi-
hone #4 alone. The second row shows the results obtained
dding microphone #3 and #5, and the third row shows the re-
of all 7 microphones. These results confirmed that even the
r quality inputs contributed to improve the recognition rate by
C average. Next, we applied biased weights so that the cen-
icrophone has the larger weight. However, the best recogni-
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Figure 4: Experimental result of Multi-input HBFC.

tion rate was obtained when we set the equal weights for all mi-
crophones.

4.3. Multi-input HBFC

In the final set of experiments, we tried HBFC with similar vari-
ance re-scaling. In eq. (5), the weight parameter w was set to 0.1
according to the results reported in [3]. Since the experiments in
the previous work and in this paper do not share anything (data,
decoder, task, language, etc.), adopting this value would be more
persuasive if we obtain good results.

In the experiments without variance re-scaling, the recognition
rate of CMN-HBFC degraded terribly to 68.15%. In that experi-
ment, 15.5% of the utterances were recognized as ”Tourist Hotel,”
which is suggesting the necessity of variance re-scaling. Contrast-
ingly, MVN-HBFC provided additional improvements, and the
recognition rate was 90.14%. It means 22% relative error reduc-
tion from the baseline (CMN-single). Then we applied variance
re-scaling to HBFC, and the results are shown in Fig. 4. CMN-
HBFC has a more drastic curve, and we can obtain satisfactory
results if we set around α = 1.5. In contrast, degradation caused
by α is small in MVN-HBFC, and the optimal recognition rate was
obtained without variance re-scaling, which is slightly better (3.0%
relative error reduction) than the optimal case of CMN-HBFC.

5. Conclusions
In this paper, we have shown how speech recognition accuracy
can be improved by various ways of feature combination in the
MFCC domain. Simple averaging in the MFCC domain tends to
make the variance of MFCC features small, so it is beneficial to
introduce variance re-scaling. However, it is an ideal case to know
the optimal value of the scaling factor, so the comparison should
be interpreted as mere reference.

Figure 5 is the summary of the experiments using vari-
ous methods. When we compare the results obtained without
variance re-scaling, MVN-HBFC provides significant improve-
ment. The relative error reduction is 22% from CMN-single, 28%
from MVN-single, 16% from the delay-and-sum beamformer with
CMN, and 11% from MVN-ave. On the other hand, CMN-ave and
CMN-HBFC degraded the accuracy. If we assume that we have a
chance to know the optimal value of the variance scaling factor α,
the difference between various methods becomes small. However,

MVN
assu
meth

shou
to op
setti
resu
ity o
wou

The
of T
sity
New
tion

[1]

[2]

[3]

[4]

[5]

[6]

[7]

2577

INTERSPEECH 2006 - ICSLP
 82

 84

 86

 88

 90

 92

M
VN-HBFC

CM
N-HBFC

M
VN-ave

CM
N-ave

delay-sum
(M

VN)

delay-sum
(CM

N)

M
VN-single

CM
N-single

R
ec

og
ni

tio
n 

ra
te

 (
%

)

68
.1

5%

no scaling
optimal scaling

Figure 5: Summary of the experiments.

-HBFC achieved the best recognition rate even under such
mption, which has approved the robustness of the proposed
od.

In [7], we discussed how the weight parameter w of HBFC
ld be optimized. In this paper, we added another issue related
timization of the scaling factor α. So far we used reasonable

ng w = 0.1 and α = 1.0 in MVN-HBFC and obtained good
lts. However, if we go forward and try to extend the applicabil-
f the proposed method, these parametric optimization issues
ld be an important future work.
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