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Abstract
Aiming at practical speech recognition systems, we are developing
speech databases representing the situation in which the applica-
tion is used, and evaluating various techniques using the database.
Such methodology is expected to contribute to bridge the expec-
tations of the developers and the reactions of the users. We start
with the applications in automotive environments, or car naviga-
tion systems more precisely. During the data collection, special
attention was paid to maintain the spontaneousness of the speaker,
to cover failed utterances, and to use the hardware setup suitable
for microphone array techniques. After the database is prepared,
various techniques are evaluated. In some cases, oracle informa-
tion is used to find the upper limit of the improvement of a specific
module. In other cases, typical improving algorithms are tested.
Recognition experiments using two separate decoders indicate that
endpoint detection, feature normalization, speaker adaptation, and
parallel decoding are promising fields. We also present some mod-
ifications of parallel decoding to reduce the computational cost and
to realize practical applications.
Index Terms: speech database, automotive environments,
module-wise evaluation.

1. Introduction
Speech recognition technologies have been improved in these
years, and it is reported that the state-of-the-art speech recogni-
tion system provides very high recognition accuracy for various
databases. However, a lot of users still insist that the speech recog-
nition systems make too many errors and they are helpful only in
limited occasions.

One of the causes of the discrepancy between the research re-
sults and the market reaction is that the evaluation database is not
representing completely the environment where the system is used.
In the research process, the user is controlled well to make clear
utterances. Besides, various unexpected events are removed from
the database as the wrong data. Although there are some excep-
tions in which spontaneous speech with unlimited grammar and
lexicon is targeted, such applications are too hard to appear in the
market. However, even in a simple isolated word recognition task,
such events occur more frequently when the system is used as a
commercial product and the user is not controlled by the engineer.
Consequently, the user feels that the system performance is poor,
and that it’s better to use an alternative interface modality.

In order to leverage the achievements in various fields of
speech recognition research, it is essential to prepare a database
that represents the product and to evaluate various technologies on
an equitable basis. In this work, we focus on the automotive sys-
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, collect a database that represents automotive environments,
evaluate various methods using the database.
In the database collection process, we paid special attention to
pontaneousness of the user’s utterance (2) coverage of failed
ances, and (3) microphone setting corresponding to the latest
rch trend. The first and second requirements are realized in

ppropriate instruction in the recording sessions, and the third
irement is realized as a microphone array.
In the evaluation process, we divide the speech recognition
m into various modules such as endpointing, speech enhance-

t, and decoding. For each module we have two options. First,
an make oracle experiments assuming that the module does
erfect job. It gives us the upper limit of the improvement in
odule, and we can assess how important the module is. Sec-
we apply a few typical improvement methods applicable to
odule. It gives us the expectation of the improvement in the

ule, and we can asses how promising the research in this field
y combining these results, it is expected that the direction of
uture research for practical systems would become clear.

2. Navigation Speech Database
in Real Automotive Environment

r navigation systems, speech interfaces are widely used for
y reasons. Taking a large amount of potential users into ac-
t, such a system would be a good example of practical speech
gnition systems. We have collected the speech data in a real
riving on the urban roads. In this section, we describe the

ils of the recording session and the database.
The recording was done in downtown Tokyo, where the car
forced to drive slowly with frequent stops due to the traffic
Therefore, a large part of the background noise is from the
unding environment, such as other cars, constructions, shops,
ays, etc. The speaker was sitting on the passenger seat, and
was a linear microphone array on the dashboard in front of

peaker. The array consists of seven microphones, which are
ted at the interval of 10cm, 5cm, 5cm, 5cm, 5cm, and 10cm.
y microphones were labeled as #1 to #7 from the driver’s side
e window side, so #4 is the central microphone. These micro-
es and a reference close-talking microphone are connected to
lti-track recorder (MTR). The close-talking signal was also
to a laptop PC, in which a speech recognition program is run-
. The speaker has a push button (PB) to activate the recogni-
program. After the button is pushed, a prompt message and a
are given to the speaker, and the recognition program starts

ceive the signals. The hardware setup is shown in Fig. 1.
To maintain the spontaneousness of the utterances, we gave
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Figure 1: Hardware setup for data collection in a car.

Table 1: Estimated SNR of each microphone data

mic. ID SNR (full band) SNR (400-5500Hz)
1 -5.0 9.3
2 -2.8 12.1
3 -3.4 8.6
4 -3.0 9.2
5 -2.7 11.7
6 -3.8 8.5
7 -2.9 10.5

close-talk 56.7 83.2

the following instructions to the speakers. First, we prepare a
booklet of road map on which pre-defined 152 points of interest
(POIs) are marked on several pages. We gave the road map to the
speaker with the instruction to

• find a POI,

• memorize it,

• close the booklet, and

• utter the name of POI.

Besides, we asked the speaker to select the POI always from a
different page of the road map from the previous utterance, and
not to select POIs in the same category (station, hotel, park, etc)
for many times. These instructions make the speaker think of a lot
of things, and prevent them from simply reading the names from
top to bottom. To give the same feeling to the speaker as in the real
situation, a speech recognition program is running on a laptop PC.
When a misrecognition occurs, the speaker is asked to repeat the
utterance only once.

Under the conditions described above, we have collected the
speech data from 18 speakers (11 male and 7 female, all in their
early twenties). There were 3,620 utterances in total, and they
were roughly segmented using a fixed time period from the beep.
After segmentation, the length of the data was approximately 7
hours in total. These utterances were then labeled by the POI
name. Some utterances include wrong pronunciation and hesita-
tion, but they are all labeled as long as the intention of the speaker
can be inferred. In this process, we found 28 (0.8%) utterances
which could not be labeled as any POI and were categorized as
OOV (out of vocabulary). The number of utterances per speaker
ranged from 134 to 326, and the number of utterances per POI
ranged from 10 to 48. These numbers are supporting the argument
that the utterances were made spontaneously.

Next, we extracted the endpoint information using the close-
talking data and the POI label using Viterbi alignment. They were
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re 2: Histogram of the time between the beep end and the
ch onset. Dark gray bars represent the new utterances (av-
e 1.62sec and standard deviation 0.61sec) and the light gray
represent the repeated utterances (average 1.54sec and stan-
deviation 0.51sec).

Table 2: Results of baseline experiments

Decoder Distant-talk Close-talk
Original 87.3 91.3
Julian 86.0 93.4

as the “oracle” endpoint information for the noisy data. We
estimated the signal-to-noise ratio (SNR) by comparing the

er of the speech and non-speech segments. Table 1 shows the
ated SNR for each microphone. Since the noise spectrum
strong peak in the low-frequency range, we also calculated

NR after applying a bandpass filter with the passing band of
to 5500Hz. It is interesting that the estimated SNR does not
any correlation with the distance between the speaker and
icrophone, although the speech recognition accuracy has a

lation with the distance as mentioned later in this paper.
To confirm the spontaneousness of the utterances, we mea-
d the time between the beep end and the speech onset. Since
peaker was not reading the list, the time to recall the POI

e may have large variations. We can compare it with the cases
hich the speaker was repeating the misrecognized utterance,
hich the hesitation time was expected to be shorter. There
024 new utterances and 568 repeated utterances (excluding
OVs), and Fig. 2 shows the histogram. It was clearly proved
the new utterances had larger variations and longer average.

3. Evaluation Results
Baseline Experiments

r collecting and analyzing the data, we carried out evaluation
riments of 152 POI isolated word recognition. Most of the
riments were done in parallel using our original decoder and
s [1] to ensure the reliability of the results. For the original de-
r, we trained triphone HMMs (1614 states) using 16 hours of

training data consisting of phonetically balanced sentences.
FCC parameters including C0 and their first and second time
atives are used. The original decoder has no rejection func-
For Julius, the sample acoustic model with PTM triphones,

h is distributed with the source code, was used. Among vari-
ariations of Julius, the Julian-v3.4.2 grammar-driven decoder
12 MFCC and log power, plus their first-order time deriva-



Vote (+decoder+comp.)
Vote (+comp.)

Vote
Likelihood-based selection

Oracle selection
FMLLR (10 words)
FMLLR (5 words)
FMLLR (2 words)

Oracle endpointing + DCN
Oracle endpointing + HEQ
Oracle endpointing + MVN

DCN
HEQ
MVN

ICA (freq.)
ICA (time)

Delay-and-sum
vocab. size 1/4
vocab. size 1/2

Enhanced speech (26dB)
Enhanced speech (14dB)

Oracle endpointing
Oracle rejection

Baseline

 80  82  84  86  88  90  92  94  96

Recognition rate (%)

Figure 3: Summary of evaluation experiments. Black bars repre-
sent the original decoder, light gray bars represent Julian, and the
dark gray bar at the bottom represents their combination.

tives is used. The path of the silence models only was allowed,
which is interpreted as rejection. All the data were originally sam-
pled by 44.1kHz, but downsampled to 16kHz prior to the experi-
ments. In the baseline experiments, fixed length segments are used
without any sophisticated endpointing, and cepstral mean normal-
ization (CMN) was applied.

Table 2 shows the results of the baseline experiments. In the
distant-talk microphone experiments, only the central microphone
was used. Even though two decoders use different acoustic mod-
els, the results are close to each other. In the experiments using
the original decoder, the individual recognition rates ranged from
60.3% to 97.4%.

3.2. Evaluation of various modifications

Next, we evaluated modifications in various modules of the speech
recognition system. All results are summarized in Fig. 3.

First, the importance of rejection and endpointing are evalu-
ated using oracle information. When we used the oracle infor-
mation about OOV, 28 OOV utterances were automatically recog-
nized correctly. Since the original decoder does not have rejection
function and always misrecognized an OOV utterance, the recog-
nition rate was improved 0.8% absolute. Julian recognized some
of 28 OOV utterances correctly, and the improvement was 0.4%
absolute. When we used the oracle information of the speech pe-
riod, the recognition rate increased to 91.1% (original) and 90.2%
(Julian), indicating very large improvements.

Two more sets of the oracle experiments were carried out to
investigate how the recognition rate changes according to the SNR
improvement and vocabulary size refinement. As for the SNR,
the distant-talk data were mixed with the close-talk data linearly
in the time domain with a varying weight. Two typical points are
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ed, where the SNR was calculated after applying the bandpass
. The improvement from the baseline to 14dB is much larger
the improvement from 14dB to 26dB. The vocabulary size

ement was done simply by splitting the dictionary into two or
groups, and the one including the correct word was used for
gnition. Steady improvements were observed every time the
bulary size was reduced.
Next, two typical microphone array techniques were evalu-
. The delay-and-sum beamformer [2] was implemented in a
le manner using the fixed delay between microphones. The

als of seven microphones are first upsampled to 64kHz, then
d delays, summed each other, and downsampled to 16kHz
n. ICA [3] was tested in the time and frequency domains, us-
he microphones #3 and #5, next to the central microphone
on the both sides. The results show that the delay-and-sum
former provides small improvement (0.9% absolute for the

nal decoder and 0.7% absolute for Julian), but ICA does not
ove the recognition rate at all. We also tried ICA using seven
ophones, but we had even larger degradation. These results
ated that the majority of the noise was nondirectional, and

e of them are correlated with each other due to reverberation.
In the feature (MFCC) domain, we tried three normaliza-
techniques, Mean and Variance Normalization (MVN), His-
m Equalization (HEQ) [4], and Delta-Cepstrum Normaliza-
(DCN) [5]. These techniques were tested with the original
der only (because the acoustic model must be re-trained), and
provement was observed. However, when we applied these

ods with the oracle endpointing information, we got high
gnition rates. In particular, MVN showed excellent perfor-
ce with the oracle endpointing, and the recognition rate was
%, which was 4.5% absolute better than CMN with the oracle
ointing. It indicates that the effectiveness of MVN is highly
ndent on good estimation of the speech segment. Contrast-
, HEQ and DCN could not improve the recognition rate even
oracle endpointing. Since these techniques have more param-
to estimate, short utterances in these experiments would not
itable for them.

As for the acoustic model, we tested Feature-space Maximum
lihood Linear Regression (FMLLR) [6], which is an adapta-
algorithm in the feature domain, but equivalent to the con-
ned one-class MLLR of the acoustic model. Adaptation was
uted in an unsupervised manner, in which the reference label
obtained by recognizing the adaptation utterance. The results
ed that the recognition rate can be improved if we use five or
words as the adaptation data. The recognition rate was 91.4%

n we used 10 words for adaptation, and no more improvement
obtained when using more adaptation data.
Finally, we tried parallel decoding with the hypothesis selec-
The signals of seven microphones are recognized in parallel,

iding seven hypotheses, and one of them is selected. Oracle
tion means that we have the complete knowledge about se-

on, and the recognition rate was calculated by counting the
ances for which at least one microphone signal was recog-
d correctly. The oracle selection recognition rate was 91.6%
he original decoder and 92.4% for Julian. These numbers sug-
the high potential of the parallel decoding framework, but a
ard likelihood-based hypothesis selection offers only poorer

lts than the baseline. In contrast, another simple approach by a
by seven microphones is quite effective. The recognition rates
88.1% (0.8% absolute improvement) for the original decoder

87.1% (1.1% absolute improvement) for Julian. In addition,



Table 3: Using six or less microphones for parallel decoding.

microphones Recog. rate (%) ave. runs
1 89.3 3.3
2 89.5 5.6
3 89.7 7.9
4 89.8 10.1
5 90.0 12.2
6 90.1 14.5

we can use seven more hypotheses made with MVN, seven more
with HEQ, and seven more with DCN. If we have a vote by all of
28 hypotheses (Vote+comp.), the recognition rate of the original
decoder is 90.2%, which means 2.9% absolute improvement from
the baseline. Finally, a vote by these 28 hypotheses of the original
decoder and 7 hypotheses of Julian (Vote+decoder+comp.) pro-
vides even better results, and the final recognition rate was 91.9%.

Among various approaches, parallel decoding showed promis-
ing results in terms of the recognition accuracy. However, parallel
decoding has an intrinsic problem of the computational complex-
ity. To analyze its applicability to practical systems, we studied
more details about parallel decoding. First, it is obvious that we
do not have to decode all 28 inputs if the vote is highly one-sided.
When we finished k decoding, we can terminate the repetition
of decoding without performance degradation if the difference of
votes of the first and second hypotheses is (equal to or) larger than
N − k (depending on the tie-breaker criterion). We checked how
many decoding runs are required for each utterance using 28 hy-
potheses provided by the original decoder with various feature nor-
malization. We started from microphone #4 with CMN, and then
tried #4 with MVN, #4 with HEQ, and #4 with DCN in this order.
It is because normalizing a set of feature vectors is much faster
than executing feature extraction for another microphone signal.
After finishing #4, we continued microphones #3, #5, #2, #6, #1,
#7 in this order, in each of which four feature normalization algo-
rithms were applied in the same order as #4. In 2396 utterances,
the first 15 decoding runs provided the same hypothesis, and no
more repetition was needed. Only 150 utterances required full 28
decoding runs, and the average number of decoding runs was 17.0.

If we are still running out of the computational power, there
are some more ways to reduce the computation by introducing ap-
proximation. The simplest way is to reduce the number of micro-
phone used. Table 3 shows the results of the reduced experiments.
The recognition rate increases smoothly as more microphones are
used, and even with only one microphone, parallel decoding with
various feature normalization provides good improvement.

Another way to reduce the computation is N-best parallel de-
coding, in which the best N hypotheses are selected in the first
decoding run. All the other hypotheses are abandoned, and the
Viterbi matching process becomes quite fast. Table 4 shows the
results of N-best parallel decoding. Even with N = 10, the recog-
nition rate is close to that of full decoding. Finally, if we combine
two approximations, we obtained 89.6% recognition rate by 10-
best parallel decoding of 5 microphones, in which 12.0 decoding
runs were required in average.

4. Conclusions
In this paper, we introduced a new speech database for develop-
ment of practical speech recognition systems in automotive en-
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Table 4: Results of N-best parallel decoding.

N Recog. rate (%)
2 89.2
3 89.1
4 89.5
5 89.6
10 89.8
20 89.8

ments. The database consists of the spontaneous utterances
en under the real driving condition. The spontaneousness was
ed by analyzing the distribution of the response time of the
ker.
We evaluated various speech recognition modules and algo-
s using this database. Oracle experiments showed that it is
rtant to achieve high quality endpoint information of each ut-
ce. It was also found that Mean and Variance Normalization
s effectively if correct endpoint information is given.

Evaluation of various algorithms showed that ICA is not suit-
for the application of this work, and speaker adaptation and

llel decoding are two promising approaches. In particular, par-
decoding shows its best performance when it is combined
various feature normalization algorithms, and a vote by the
theses is adopted. The computational cost is a serious prob-
of parallel decoding, but it can be weakened by introducing
us approximations.

We have shown an example of application-oriented database
ction and system evaluation for automotive systems. A strat-
for the future research was given by evaluation experiments,

as development of reliable endpoint detection algorithm,
ker adaptation algorithm, and parallel decoding and hypoth-
selection algorithms. Similar approach would be helpful for
r applications of speech recognition systems.
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