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Abstract

This paper presents an approach to feature enhancement for 
noisy speech recognition. Three prior models are introduced to 
characterize clean speech, noise and noisy speech respectively 
using sequential noise estimation based on noise-normalized 
stochastic vector mapping. Environment adaptation is also 
adopted to reduce the mismatch between training data and test 
data. For AURORA2 database, the experimental results 
indicate that a 0.77% digit accuracy improvement for 
multi-condition training and 0.29% digit accuracy 
improvement for clean speech training were achieved without 
stereo training data compared to the SPLICE-based approach 
with recursive noise estimation. For MAT-BN Mandarin 
broadcast news database, a 2.6% syllable accuracy 
improvement for anchor speech and 4.2% syllable accuracy 
improvement for field report speech were obtained compared 
to the MCE-based approach. 
Index Terms: noisy speech recognition, feature enhancement, 
environment adaptation, prior model 

1. INTRODUCTION

The state-of-the-art speech recognizers can achieve very high 
recognition rate under clean environment, while the 
recognition rate generally degrades drastically under noisy 
environment. Therefore, noise-robust speech recognition has 
become an important task for noisy speech recognition. Recent 
research on noise-robust speech recognition mostly focused on
two directions: (1) Remove the noise from the corrupted noisy 
signal in signal or feature space, such as spectral subtraction, 
and model-based feature enhancement: SPLICE [1]; (2) Model 
compensation in model space, such as PMC [7]. 

The stochastic vector mapping (S.V.M.) [1-2] with 
sequential noise estimation-based noise normalization [1,3,5] 
have been proposed and achieved high improvement in noisy 
speech recognition. However, there still exist some drawbacks 
and limitations. First, the performance of sequential noise 
estimation will decrease when the noisy environment vary 
drastically. Second, the environment mismatch between 
training data and test data still exists and results in performance 
degradation. Third, the maximum-likelihood-based stochastic 
vector mapping (SPLICE) required annotation of environment 
type and stereo training data. Nevertheless, the stereo data are 
not available for most noisy environments. In order to 
overcome the insufficiency of tracking ability in sequential EM, 
the prior models are introduced to provide more information in 
sequential noise estimation. Furthermore, an environment 
adaptation is constructed to reduce the mismatch between the  
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igure 1: Detailed flowchart of the training and testing phase 

ining data and test data. Finally, MCE-based approach [2] is 
ployed without the stereo training data and an unsupervised 
me-based auto-clustering is adopted to automatically detect 
 environment type of the training data. 

NOISE-NORMALIZED STOCHASTIC 
VECTOR MAPPING FOR FEATURE 

ENHANCEMENT  

Stochastic Vector Mapping (S.V.M.) 

ure 1 shows the frameworks of the proposed S.V.M.-based 
ture enhancement approach in training, adaptation and 
ting phases. The S.V.M.-based feature enhancement 
proach estimates the clean speech feature x  from noisy 
eech feature  through an environment-dependent 
pping function 

y
( ); eF y , where  denotes the mapping 

ction parameters and e  denotes the corresponding 
vironment of the noisy speech .

( )e

y
Assuming that the training data of the noisy speech Y can 

 partitioned into K different noisy environments, the feature 
Y under an environment  can be modeled by a Gaussian 
xture model (GMM): 

e
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where  represents the environment model. The clean 

speech feature 
e

x  can be estimated using stochastic vector 
mapping function which is defined as follows: 
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e e

k
k
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where ( ) ( )

1

Ke e
k k

r  denotes the mapping function 

parameters and the posterior probability | ,p k y e can be 

estimated using the Bayes theory based on the environment 
model  as follows: 

e

1
| , | | , | | ,

K

j
p k y e p k e p y k e p j e p y j e  (3) 

Generally,  are estimated from a set of training data using 
maximum likelihood criterion. For the estimation of the 
mapping function parameter , if the stereo data (a clean 
speech signal and the corrupted noisy speech with the identical 
clean speech signal) are available, the SPLICE approach can be 
directly adopted. However, the stereo data are not available in 
real-life applications. This study employs an MCE-based 
approach to overcome the limitation. In [2], the MCE-based 
criterion was proposed to estimate the parameters of the 
mapping function and the hidden Markov model (HMM). This 
approach can obtain satisfactory results without the stereo data. 
Furthermore, the environment type of the noisy speech data is 
needed for training the environment model . Annotation of 
the environment type for the noisy speech is to roughly classify 
the noisy speech data into E noisy environments manually by 
listening to the background noises in the speech file. This 
strategy assigns each noisy speech file to only one environment 
type and is time consuming. Actually, each noisy speech 
contains several segments with different types of noisy 
environment. Since annotation of noisy speech affects the 
purity of the environment model , this study introduces a 
frame-based unsupervised noise clustering approach to 
construct a more precise categorization of the noisy speech. 

( )e

( )e

e

e

2.2 Noise-Normalized Stochastic Vector Mapping 

In [1], the concept of noise normalization is proposed to reduce 
the effect of background noise in the noisy speech for feature 
enhancement. If the noise feature vector  of each frame can 
be estimated first, the noise-normalized stochastic vector 
mapping (N.N.-S.V.M.) is conducted by replacing  and 

n

y x

with  and -y n -x n  as 

( )

1
- - ; - | - ,    

K
e e

k
k

x n F y n y n p k y n e r  (4) 

Obviously, the estimation algorithm of noise feature vector n
plays an important role in noise-normalized stochastic vector 
mapping.

3. PRIOR MODEL FOR SEQUENTIAL 
NOISE ESTIMATION 
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Figure 2: Flowchart of noise estimation 

is study employs a frame-based sequential noise estimation 
orithm [1,3,5] by incorporating the prior models. Figure 2 

ows the flowchart of noise estimation. In the procedure, only 
isy speech feature vector is observed in the current frame. 
ce the noise and clean speech feature vector are missing 
ultaneously, the relation among clean speech, noise and 

isy speech is required first. Then the prior models are 
nstructed to provide more information for noise estimation.  

Acoustic Environment Model 

e nonlinear acoustic environment model is introduced first 
 noise estimation in [1]. Given the cepstral feature of a clean 

eech x , additive noise  and channel distortion , the 
proximated nonlinear relation among 

n h
x , ,  and the 

rrupted noisy speech 
n h

y  in cepstral domain is estimated as: 

y h+x+g n-h-x ,      (5) Tg(z)=Cln I+exp C z

ere C denotes the discrete cosine transform matrix. In order 
linearlize the nonlinear model, the first order Taylor series 
pansion was used around two updated operating points 

d
0n

x
0 . By ignoring the channel distortion effect, for which 

, Eq. (5 ) is then derived as: 0
x x x x x
0 0 0 0 0 0 0 0+g n - +G n - x- + I-G n - n-n0

 (6) 

ere T TG(z)=-Cdiag I I+exp C z C .

Prior Models 

e three prior models 
x
,

n
 and  which denote clean 

eech, noise and noisy speech respectively are required for 
uential noise estimation. First, the noise and clean speech 
or models are defined as follows:  

y

n
1

n; n; , ,
C
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c
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M
x x
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,
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ere pre-training data are required to train the model 
rameters of the two GMMs  and .

(7)

x n

While the prior noisy speech model is needed in sequential 
ise estimation, the noisy speech model parameters are 
rived according to the prior clean speech and noise models 
e approximated linear model) using Eq. (6) as follows: 
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3.3 Sequential Noise Estimation 

In [1,3,5], sequential expectation-maximization (EM) 
algorithm is employed for sequential noise estimation. In this 
study, the prior clean speech, noise and noisy speech model is 
involved to construct a robust noise estimation procedure. 

Based on the sequential EM algorithm, the estimated 
noise is obtained using . In the E-step, 

an objective function is defined first as: 
1 n

n arg max (nt Q 1 )t

1 1
1 1 1 1

1 1 1 1(n) ln ( , , | n) | , nt t t t t
tQ E p y M C y      (9) 

where 1
1
tM  and  denotes the mixture indexes of the 

clean speech model and noise model to which the noisy speech 

1
1
tC

y  occurs from frame 1 to t+1. In the M-step, the iterative 
stochastic approximation and a forgetting factor are introduced. 
Finally, a sequential noise estimation function is derived. 

4. ENVIRONMENT ADAPTATION 

Because the prior models are usually not complete enough to 
represent the universal data, the environment mismatch 
between training data and test data will result in the 
degradation on feature enhancement performance. In this study, 
an environment adaptation strategy is proposed before testing 
phase to deal with the problem. Figure 3 shows the 
environment adaptation flowchart. The environment adaptation 
procedure contains two parts: The first one is model parameter 
adaptation on noise prior model  and noisy speech prior 
model  and the second is on noise-normalized S.V.M. 

function  and environment model .

n

y

( )e
e

4.1 Model Adaptation on Noise and Noisy Speech Prior 
Models 

For noise and noisy speech prior model adaptation, MAP 
adaptation [8] is applied to the noise prior model 

n
 first. 

The adaptation equation for the noise prior model parameters 
given T frames of the adaptation data is defined as: z

, ,
1 1 1 1

1 1
T C C T

c c c t c
t c c t

w d c td

, ,
1 1

Tn
c c c c t t c c t

t t
d y d

T
                  (10) 

1

, ,
1 1

T TT Tn n n nn
c c c cc c c t t t c c c c c t

t t
d z z p d

where the conjugate prior density of the mixture weight is the 
Dirichlet distribution with hyper-parameter of  and the joint 
conjugate prior density of mean and variance parameters is the 
Normal-Wishart distribution with hyper-parameter of 

cv

, , ,  and c c c c .
After adaptation of noise prior model, the noisy speech 

prior model  is then adapted using the newly adapted 

noise prior model  according to Eq. 
y

n (8).

4.2 Model Adaptation of Noise Normalized Stochastic 
Vector Mapping 
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Figure 3: Detailed flowchart of the adaptation phase 

For noise-normalized S.V.M. adaptation, model parameters 
e

d mapping function parameters in  need to be 

apted in the adaptation phase and testing phase, respectively. 

( ); eF y

st, adaptation of model parameter 
e
 is similar to that of 

ise prior model. Second, the adaptation of ( ) ( )

1

Ke e
k k

r  is 

 iterative procedure. While ( ) ( )

1

Ke e
k k

r  is not a random 

riable and does not follow any conjugate prior density, an 
L-based adaptation which is similar to the correction vector 
imation of SPLICE is employed as: 

( ) | - , - | - ,e
k t t t t

t t
r p k y n e x y p k y n e      (11) 

ere the temporally estimated clean speech tx  are 
imated using the un-adapted noise-normalized stochastic 
pping function in Eq.(4) . 

5. EXPERIMENTAL RESULTS 

Training, Adaptation and Test Sets 

this study, two corpora were introduced for evaluation. The 
st database is the famous benchmark—AURORA2 database 
 for noisy speech recognition evaluation. One fifth of the 
fault test data were extracted for adaptation. The HTK 
eech recognizer was introduced and the digit recognition 
curacy was used to measure the performance.  

The second is the MAT-BN corpus [9] which consists of 
andarin TV News. The news content is collected from 
chors, field reporters and interviewers. One hundred and 
enty hours news audio were extracted for training, 
aptation and testing. The speech recognizer [7] was 
nstructed without any language model and the syllable 
curacy was used to measure the performance. 

Experiments on AURORA2  

ble 1 shows the experimental results of the proposed 
proach on AURORA2 database. Two results of previous 
earch were referenced for comparison and three experiments 
re conducted for different experimental conditions: no 
noising (BASELINE) [8], SPLICE with recursive EM using 
reo data (SPLICE+R_EM) [1], proposed approach using 
nual annotation without adaptation (N.N._S.V.M.+MA-AD), 



the proposed approach using auto-clustered training data 
without adaptation (N.N._S.V.M.+ AC–AD) and with 
adaptation (N.N._S.V.M. +AC+AD). The overall results show 
that the proposed approach can slightly outperform the 
SPLICE approach with recursive EM algorithm under the lack 
of stereo training data and manual annotation. Furthermore, the 
environment adaptation can reduce the mismatch between 
training data and test data. 
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Table 1: Experimental result on AURORA2 

Methods
Training 

Mode
Set A Set B Set C Overall

Multi-cond. 87.82% 86.27% 83.78% 86.39%
BASELINE 

Clean only 61.34% 55.75% 66.14% 60.06%

Multi-cond. 91.49% 89.16% 89.62% 90.18%SPLICE 
+R_EM Clean only 87.82% 87.09% 85.08% 86.98%

Multi-cond 91.42% 89.18% 89.85% 90.21%N.N._S.V.M. 
+MA-AD Clean only 87.84% 86.77% 85.23% 86.89%

Multi-cond. 91.06% 90.79% 90.77% 90.89%N.N._S.V.M. 
+AC–AD Clean only 87.56% 87.33% 86.32% 87.22%

Multi-cond. 91.07% 90.90% 90.81% 90.95%N.N._S.V.M. 
+AC+AD Clean only 87.55% 87.44% 86.38% 87.27%

[1]

[2]

[3]5.3 Experiments on MAT-BN  

Table 2 shows the experimental results of the proposed 
approach compared to the baseline and MCE-based approaches 
[2]. Because of the lack of stereo data, SPLICE-based 
approach was not constructed for comparison. Furthermore, 
since MAT-BN database does not contain detailed noisy 
environment annotation (such as SNR), auto-clustering is 
required for environment categorization of the training data. 
The results demonstrate the proposed approach outperformed 
the baseline and MCE-based approaches for both anchor and 
field report speech data. However, the recognition accuracy of 
field report speech is still worse than that of anchor speech. 
This is because the field report speech contains spontaneous 
and disfluent speech. Cepstral feature enhancement is still not 
robust enough to overcome the problem. 

[4]

[5]

[6]

[7]

Table 2: Experimental results on MAT-BN 

Speaker Back-
ground 

BASE-
LINE MCE

N.N._
S.V.M.
–AD

N.N._
S.V.M.
+AD

Speech 58.1% 59.1% 61.1% 61.9%
Music 55.7% 57.5% 59.6% 60.8%
Other 63.9% 68.4% 69.4% 70.1%

Anchor

Overall 59.2% 61.7% 63.4% 64.3%
Speech 27.9% 32.3% 35.8% 37.3%
Music 21.9% 28.1% 31.2% 32.8%
Other 30.9% 36.1% 38.0% 39.1%

Field 
report

Overall 26.9% 32.2% 35.0% 36.4%

[8]

[9]
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6. CONCLUSIONS 

is study has presented an approach to cepstral feature 
hancement for noisy speech recognition using 
ise-normalized stochastic vector mapping. The prior model 
s introduced for precise noise estimation. Then the 
vironment adaptation is constructed to reduce the 
vironment mismatch between training data and test data. The 
perimental results demonstrate that the proposed approach 
n slightly outperform the SPLICE-based approach without 
reo data on AURORA2 database. Furthermore, on the 
andarin news corpus, the proposed approach also achieves 
isfactory improvements compared to the baseline and 
CE-based approaches.  
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