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Abstract

This paper compares wavelet and STFT analysis for a speaker-
independent stop classification task using the TIMIT database. In
the designed experiment the HMM classifier had to assign each test
token to one of the following stop classes [d,g,b,t,k,p,dx]. On 6332
stops the wavelet features obtained an overall accuracy of 86 %
which corresponds to a 14 % relative error reduction compared to
the STFT baseline system. Furthermore an analysis of the HMM
misclassifications revealed that voiced stops were highly confused
with their voiceless unaspirated counterparts.
Index Terms: speech recognition, wavelet analysis, Hidden
Markov Models.

1. Introduction
The stop consonants can be characterized as highly non-stationary
sounds with short durations usually articulated in the vocal tract
in three diverse phases. These phases, which occur sequential in
time, are denoted by silence, plosion and aspiration. A stop is de-
noted as voiced or voiceless depending on the state of the glottis.
If the vocal cords are vibrating during the closure or even through
the burst the stop is called voiced (e.g. [g],[d],[b]) otherwise it
is called voiceless or unvoiced (e.g. [k],[t],[p]). In order to ex-
tract useful features for stop sounds an automatic speech recog-
nition (ASR) system has to extract voicing information and for-
mant transitions with sufficient high frequency resolution while on
the other side very short events like the burst and closure points
must be captured with high time resolution. The dominant sig-
nal analysis technique in current state-of-the-art speech recogniz-
ers is still based on the Short-Time-FOURIER-Transform (STFT)
which uses a window function to analyze a signal. It is well known
that the properties of the resulting local time-frequency analysis
heavily depend on the chosen type and length of the window func-
tion. High frequency resolution can be achieved by long windows
while time resolution can be increased by choosing shorter win-
dows. Usually a HAMMING-window with duration between 20 ms
- 40 ms is chosen as a compromise. It is often argued that the fix
window size has serious consequences for the feature extraction of
stops [1, 2]. Ideally, different speech sounds should be analyzed
with different window lengths depending on the characteristics of
the underlying signal. Exactly this kind of analysis is offered by
the so-called Wavelet Transform (WT). In contrast to the STFT,
WTs use long windows to measure low frequencies in the signal
and short windows to capture high frequency components. This
property of the wavelet transform makes it an ideal candidate for
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nalysis of stop consonants as long windows are useful for de-
ng voicing while the use of short windows allows to identify
place of articulation. Furthermore they have an infinite set of
ible basis functions which are not limited to sine and cosine
tions. Figure 1 shows an example of the different kind of anal-
offered by WT and STFT.
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re 1: Comparison of FOURIER and wavelet analysis for the
iced stop [t] (left) and its voiced counterpart [d] (right).

Wavelets have previously been used for stop classification and
research community is in agreement that wavelet transforms
r clear theoretical advantages over STFT based feature extrac-
methods [2, 3]. In contrast, the experimental results did not
al a clear superiority of wavelet features over STFT methods.
marizing the reported results in the literature a non-conclusive
tion about the use of wavelet transforms for automatic stop
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classification was found [2, 3, 4, 5]. We believe this is mainly due
to the use of different types of wavelet transforms, classifiers and
databases. Even as most of the work was carried out on the TIMIT
database, often only parts of the available data were used for the
experiments.

This paper compares wavelet and STFT analysis for a speaker-
independent stop classification task. Unlike in previous work stops
were extracted from continuous speech of the TIMIT database
using all available speakers from eight dialect regions. A stan-
dard Hidden MARKOV Model (HMM) paradigm was employed
for classification. The used wavelet transform was kept quite sim-
ilar to the STFT to isolate the effect of the different window size
by simulating the mel-frequency scale in the filter spacing and by
choosing an appropriate mother wavelet. Wavelet transforms have
the potential to improve the stop recognition without sacrificing
the performance of other phonemes. The described system is also
applicable for other phoneme classes than stops as it basically fol-
lows the standard feature extraction used in speech recognition. It
is therefore interesting to compare the achieved results with knowl-
edge based systems specifically tuned for stop classification.

2. Wavelet analysis and feature extraction
This section introduces the wavelet feature extraction for English
stop classification shown in the Figure 2.

Figure 2: Flowchart of the involved signal processing steps for the
stop classification experiments based on the mel-scaled wavelet
filterbank.

2.1. Subband Energy Computation

Wavelet coefficients are obtained by correlating the signal with
translated and dilated versions of a mother wavelet. This pro-
cess can be considered as a filterbank analysis if we interpret the
wavelet as the impulse response of a bandpass filter. In opposite
to the STFT which is a constant bandwidth analysis the wavelet
transform performs a so-called constant-Q analysis where the ratio
of center frequency and bandwidth remains constant for all filters.
This type of filterbank analysis is more appropriate than a con-
stant bandwidth filterbank as it directly simulates the non-linear
frequency perception in human sound processing.

In practice, the scaling and translation parameters as well as
the speech signal itself have to be sampled. Hence, the realizable
Continuous-Wavelet-Transform (CWT) of a signal x is defined by:

W(s, n) =
1√
s

∞∑
k=−∞

x(k) ψ∗
(

k − n

s

)
(1)

where s denotes the scaling parameter, n is the translation param-
eter and ψ∗ is the complex conjugate wavelet function. The CWT
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used because it produces frame synchronous coefficient vec-
directly applicable for HMMs and allows an easy simulation
e mel-frequency scale by means of an appropriate sampling
e scale parameter. The scale parameter s can be related to the
r center pseudo-frequency fci via:

smel
i =

fs

fci

Fc =
fs

700 · (10fci
/2595 − 1

)Fc (2)

re fs is the sampling frequency of the speech signal. Fc de-
s the normalized center frequency of the mother wavelet and
ives the equally spaced center frequencies

fci = fl + i · fh − fl

I + 1
(3)

g the perceptional mel-frequency scale:

f(f) = 2595 · log10

(
1 +

f

700

)
(4)

re I is the total number of filters and fl, fh are the lower and
er mel-frequency cut-offs of the entire filterbank. Here we em-
ed a modulated Gaussian function, called the complex MOR-
wavelet:

ψ(t) =
1√
πFb

· e− t2
Fb · e2πiFct (5)

bandwidth parameter Fb and center frequency parameter Fc

Both parameters determine the characteristics of the initial
elet filter which is then scaled to produce a set of filters to
r the frequency spectrum of interest. The Fc parameter de-
the number of oscillations of the complex exponential while
andwidth parameter controls the decay of the Gaussian mod-
on window. The constant-Q factor of the complex MORLET

elet is given by:

Q(Fb, Fc) =

√
π2FbF 2

c

2 ln(2)
(6)

MORLET wavelet was chosen because it provides a good time-
uency resolution and it ensures that one can purely measure the
ct of the varying window size as both STFT and WT transform
a (complex) sine-cosine basis.

Feature Extraction

emove the linear correlation between the individual subbands
incipal Component Analysis (PCA) was applied to the loga-
ic compressed wavelet subband energy vectors. The PCA is

tistical analysis tool which can be used to find a lower dimen-
al subspace whose orthogonal basis vectors correspond to the
ction of the greatest variance in the original space. The PCA
e best linear transform in terms of decorrelation efficency and
gy compaction.
It is well known that speech recognition systems purely based
tatic features fail to model the evolution of speech features
time. Especially for stop sounds it is important to model the
re trajectories as the discriminant information is mainly en-
d in the transitions from the closure phase to burst and aspira-

. The standard method for integrating dynamic information is
lculate the so-called delta coefficients [7] which approximate
ime-derivatives of the feature trajectories. Usually the first and
nd order derivatives are appended to the static feature set.



3. Classification experiments

3.1. Database

Classification experiments were carried out on the TIMIT database
using all available speakers and dialect regions. In particular,
17998 stops from 462 different speakers (326 male/136 female)
were used for training while 6332 stops spoken by 168 different
speakers (112 male/56 female) were extracted for evaluating the
classifier’s performance. Stop closures marked in the TIMIT data
(e.g. [pcl]) were merged with the release label (e.g. [p]) to rep-
resent the stop as one segment (e.g. [p]). The individual compo-
sition of test and training set can be seen from Table 1. Besides
the voiced and voiceless stops the flap [dx] was extracted from the
TIMIT data as done in [8].

Table 1: Composition of stops in training and test set using the
TIMIT database

Set Voiced Stop Voiceless Stop Flap

d g b t k p dx

Training 2432 1191 2181 3948 3794 2588 1864
Test 840 452 879 1367 1204 956 634

3.2. Model training and evaluation method

3.2.1. Training phase

The Hidden Markov Toolkit (HTK) toolkit was configured as a
classifier [7]. The HMM topology followed standard left-to-right
models without skips using nine emitting states. The observa-
tions were modeled by continuous Gaussian mixture probability
density functions with diagonal covariance matrices. The HMM
models were initialized by the HTK tools HCompV and HInit.
Then the initialized models were trained using BAUM-WELCH re-
estimation by means of the HTK tool HRest. Finally the model set
was refined through mixture incrementing and several passes of
BAUM-WELCH re-estimation. At this point new Gaussian mixture
components were added one at a time followed by three rounds of
BAUM-WELCH re-estimation. We used a maximum number of 8
mixtures per state.

3.2.2. Test phase

The classification accuracy was evaluated using the HTK tool
HResults and the output of the HVite decoder. The percentage
number of correctly classified stops was chosen to measure the
performance.

To ensure that the observed performance differences between
wavelet and baseline system are statistically significant MCNE-
MAR’S test was applied as it was suggested in [9]. The test requires
that the errors made by an algorithm are independent, which is a
valid assumption for isolated stop classification. Using the Nor-
mal distribution approximation the test was performed for differ-
ent significance levels α. The lower the value of α the more the
observed performance differences must diverge to be accepted as
significant.
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Experiments

e designed experiment the classifier had to assign each test
n to one of the following stop classes [d,g,b,t,k,p,dx]. The
lts were recorded for both the STFT baseline system consisting
e HTK-FBANK features followed by a PCA for decorrelation
the wavelet features as described in Section 2. Both filterbanks

configured using the following parameters:

• Number of channels: 24

• Frequency range: 125 Hz - 8 kHz

• Spacing of center frequencies: mel scale

• Number of static PCA coefficients: 15

• Pre-emphasis coefficient: 0.97

• Frame rate: 1ms

window size of the STFT was set to 32 ms. The window size
e CWT analysis varied between 2 ms and 40 ms. The MOR-
wavelet had a constant-Q factor of about 3.3 by setting the

er frequency parameter to Fc = 0.5 and the bandwidth pa-
eter to Fb = 6. The chosen frame rate was motivated by the
llest wavelet filter length which ensured a high time resolu-
and generated at the same time enough frames for training the
M models compared to the standard frame rate of 10 ms. It is
r that the STFT does not require such a high data rate but for
parison purposes both systems used the same frame rate. The
c features were augmented with delta and acceleration coeffi-
ts obtained by HTK yielding 45-dimensional feature vectors.

Results

results for the stop classification performance of the STFT
line and the wavelet system are shown in Table 2.

Discussion

king at the overall stop classification rate the wavelet features
86 % achieved a moderate but significant (α = 0.01) higher
racy than the STFT baseline system with 83 %. This corre-
ds to a 14 % relative error reduction. In one of the best re-

ed results in the literature a knowledge based approach using
stic-phonetic features was proposed for English stop classifi-
n [8]. The evaluation was carried out on 1200 stops of the
IT database (60 speakers) and achieved an overall accuracy of
. In comparison to that our wavelet based system obtained an

valent overall classification accuracy on a much larger dataset
speakers).

A detailed look on the errors made by the wavelet system re-
ed a strong asymmetry in the confusion of voiced and voice-
stop pairs (see confusion matrix in Table 2). About 54 % of

remaining errors occurred between voiced and their voiceless
ants. These findings are in agreement with previous reported

lts in [1]. This high confusion can partly be explained by the
that the burst spectrum for a voiced stop and its voiceless coun-
art is very similar [1]. Using a HMM framework another point
onsider is the usually shorter duration of voiced stops com-
d to their voiceless pendants resulting in fewer training data
hence, less accurate acoustic models. Considering the compo-
n of the database voiced stops are slightly underrepresented.
ious work [1, 8] has also shown that temporal measures like
voice onset time (VOT), defined as the passed time between
top release and the onset of voicing, are better suited to distin-
h voiced from unvoiced stops than spectral features. Voiceless
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stops normally exhibit a much larger release duration than voiced
stops (see Figure 1). However, this only holds for stops occuring
in syllable-initial position. If a voiceless stop occurs in a word-
final (e.g. pit) or cluster position (e.g. stop) it is usually artic-
ulated unaspirated which leads to shorter and hence ambiguous
VOTs. The experiments undertaken in this study used stops ex-
tracted from a large variety of positions complicating the voicing
distinction based on VOT. To underline this argument we mea-
sured the release duration as an estimate of the VOT of all stops in
the training set. We further measured the release durations for all
stops being misclassified by the HMM with respect to their voicing
property (e.g. [d] as [t] or [p] as [b]). The result shown in Figure 3
demonstrates that there exists a fairly large overlap of the release
duration distributions of voiced and voiceless stops in contrast to
the almost perfect separation reported in [1]. This is mainly due
to unaspirated voiceless stops which exhibit a VOT very similar to
voiced stops [10]. Furthermore it is interesting to see that most of
the HMM misclassifications occur for release durations between
10 -40 ms which is exactly the region of the highest overlap. This
indicates that an additional VOT rescoring as done in [1] would
not result in much benefit as the HMM already models the VOT
quite well.
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Figure 3: Release duration distributions for unvoiced and voice-
less stops measured in the TIMIT training set. The bars show
the according distribution of the HMM misclassifications between
voiced and voiceless stop pairs based on the TIMIT test set.
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4. Conclusions
following conclusions about the use of wavelet analysis and

Ms for English stop classification can be drawn. Firstly, the
ti-resolution property of WTs allows for a better modeling
top consonants, in particular voiceless stops. A statistically
ificant 14 % relative error reduction was achieved on a large
ker-independent stop classification task compared to the STFT
ysis. The obtained overall performance of the data-driven
M approach was comparable to one of the best knowledge
d systems tuned for stop classification. Secondly, the study
shown that the varying window size of the wavelet analysis can
prevent the confusions between voiced and voiceless unaspi-
d stops. Because in that case the VOT is not an reliable voicing
cator other (acoustic) features related to the state of the glottis
be needed. Also applying discriminative feature transforma-

s instead of the PCA as well as integrating context information
ikely to result in further improvements.
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Table 2: Confusion matrix (%) for the classification of 6332 stops. The overall accuracy for the wavelet system (white
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[dx] is an allophone of [t] and [d] their confusions (marked as X) were not treated as errors [8].

Classified as Classified as Classified as Classified as Classified as Classified as Classified as
[t] [d] [k] [g] [p] [b] [dx]

[t] 86.7 83.2 7.2 11.1 2.9 2.7 0.4 0.7 2.6 1.8 0.2 0.5 X X
[d] 16.5 14.5 74.8 77.1 0.5 1.2 2.9 3.5 1.5 0.8 3.8 2.9 X X
[k] 2.8 3.7 0.9 1.3 90.0 85.8 4.4 6.7 1.9 2.4 0.0 0.1 0.0 0.0
[g] 0.4 1.3 7.1 6.4 12.8 14.5 75.3 72.1 2.0 0.9 1.3 1.5 1.1 3.3
[p] 3.8 4.7 1.3 1.2 1.4 2.5 0.4 0.7 89.1 82.5 4.0 8.2 0.0 0.2
[b] 0.2 0.2 4.9 3.2 0.1 0.2 1.3 1.4 11.3 8.8 81.0 83.7 1.3 2.5
[dx] X X X X 0.0 0.2 0.6 1.1 0.2 0.2 0.3 1.9 98.9 96.6
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