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ABSTRACT

A new method is presented for adapting the HMMs of a
speech recognition system to the condition of a hands-free
speech input in a room environment. The reverberation in a
room usually has a bad effect on the performance of a
recognition system. Reverberation causes an artificial
extension of acoustic excitations what gets visible as so
called reverberation tail when looking at the envelope of the
short-term energy over the whole frequency range or in
subbands.

The approach is based on the assumption that the acoustic
excitation of a speech segment, as modeled by an HMM
state, will be seen as attenuated versions at successive HMM
states. Adding this attenuated excitations in the spectral
domain at each HMM state leads to a considerable
improvement of the recognition performance.

Furthermore a new approach is presented to adapt the
Delta parameters that are usually taken as additional acoustic
features. The efficiency of both new techniques has been
proved by some experiments on isolated and connected word
recognition with the TIDigits speech data base.
Index Terms: robust speech recognition, HMM adaptation,
hands-free speech input, reverberation

1. INTRODUCTION

The main effort for improving the performance and the
robustness of speech recognition systems in real application
scenarios is spent on the development of techniques to
compensate the influence of background noise and of an
unknown frequency weighting due to e.g. the characteristics
of the microphone. This compensation approach is either be
realized as a robust feature extraction or by an adaptation of
HMMs (Hidden Markov Models).

In many applications it would be desirable to allow a
hands-free speech input without the need of wearing a close-
talking microphone. This would make the use of recognition
systems more comfortable. But the hands-free speech input
leads to a major deterioration of the recognition performance
due to the influence of the room acoustics. Only a few
investigations (e.g. [1],[2],[3]) have been carried out on
compensating the influence of a hands-free speech input in
rooms so far.

A new technique will be described in the next section to
adapt the spectral and energy parameters of HMMs to speech
data, that have been recorded in a reverberant environment.
This new approach can be applied to whole-word HMMs as
well as to triphone models. Furthermore the technique can

e
a
u
r
in

T
b
d
d
w
r
m
s
im
s
e
th
a
th

T
s
H
d
f
d
c
s
o
G
w
a
T
e
c
1
b
th
H

T
o
s
a
p
o
b

781

INTERSPEECH 2006 - ICSLP
r the Case of a Hands-free Speech
erant Rooms

arald Finster

ciences, Krefeld, Germany
niederrhein.de

asily be combined with an existing approach [4] for
dapting HMMs to stationary background noise and
nknown frequency characteristics. Results of some first
ecognition experiments will be presented to show the gain

recognition performance.

2. NEW ADAPTATION APPROACH

he influence of a hands-free speech input in a room can
e modeled as a superposition of the original signal and
elayed and attenuated versions of this signal. These
elayed versions are caused by multiple reflections at the
alls or at any object in the room. The effect is called

everberation. The transmission between a speaker and a
icrophone in a room can be modeled by convolving the

peech signal with a room impulse response. But this
pulse response is usually time variant in case the

peaker moves or the conditions in the room change due to
.g. opening a door or a window or other people moving in
e room. The estimation of the room impulse response is
quite difficult task because of the fairly high length of
e impulse response and the time variant behavior.

o derive the new approach, the modeling of speech
egments is considered as it is done with a single state of a
MM. A speech segment is usually described by a
istribution density function for the spectrum and the
rame energy. In a lot of realizations the spectrum is
efined by a set of cepstral parameters because the cepstral
oefficients proved to be less correlated in comparison to
pectral coefficients. Under this assumption a single state
f a HMM models a segment by a set of individual
aussian distributions for each acoustic parameter. We
ill focus on the means of these parameters in our

pproach.
he average duration of a speech segment can be
stimated from the transition probability for remaining in a
ertain state. The duration is usually in the range of 20 to
00 ms. This makes it obvious that the detailed description
y a room impulse response is not really needed when
inking about adaptation approaches on the basis of
MM modeling.

he idea of the new approach is based on the occurrence
f the acoustic excitation, as defined within a single HMM
tate, as attenuated versions at later HMM states. These
ttenuated versions of the acoustic excitations from
revious states will superpose the acoustic excitation of an
bserved HMM state. The acoustic excitation is described
y the means of the spectral parameters and the frame
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Figure 1: Determination of weighting coefficients

energy. The weighting coefficients defining the individual
attenuations are derived from the description of the room
impulse response as an exponentially decaying
characteristic. This is visualized in figure 1.

The reverberation time T60 is needed as the only
parameter for defining the exponential characteristic where a
value of 500 ms is chosen for the exemplary curve in figure
1. Four HMM states are considered in this figure. Their
average durations can be estimated from the transition
probabilities to remain in the corresponding state. The
durations are used for defining the length of the
corresponding segments in the exponential characteristic. In
general the energy weighting coefficients can be calculated as
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The weighting coefficients for the example in figure 1
describe in terms of spectral energy how much of the acoustic

excitation at state nS will be seen in the later states 1+nS to
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3+n . The coefficients have to be individually calculated

or each HMM state due to the different length of the
egments that are modeled by the HMM states.

he weighting coefficients can be immediately used to
dapt the frame energy of each HMM state by adding the
orresponding contributions of the previous frames. In the
ame way the power density spectrum X can be adapted
fter transforming back the cepstral coefficients to the
near Mel spectral domain. The adaptation approach can
e described as weighted sum of the spectrum

( )jn mixS , at HMM state nS and for the individual

ixture component with index
jmix and the average

pectra ( )inSX − of previous HMM states:
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his way the power density spectra in the linear Mel
omain are individually adapted at each state and for each
ixture component by taking into account the attenuated

verage spectra of previous HMM states. These average
pectra are derived from a set of average cepstral
oefficients that are calculated as weighted sum over all
ixture components with their individual mixture weights.

he adapted spectra ( )jn mixSX ,
~

have to be

ansformed to the cepstral domain again.

he effect of adapting the spectral means is shown in
igure 2 by looking at spectrograms that are derived from
e cepstral means and the average segment durations of

ll HMM states. 3 different versions of the spectrogram
re shown for the word “six” that have been derived from
different HMMs.

The HMMs consist of 16 states. A spline interpolation
applied to recover the spectrogram from the 16 states at

frame rate of 10 ms. The set of average cepstral means is
ken for the transformation back to the spectral domain as
ey can be calculated from the cepstral means of several
ixture components under consideration of the individual
ixture weights.

The upper graph shows the spectrogram as derived
rom the HMM of the word “six” (s-ih-k-s) where the
MM has been created as output of a training with the

lean TIDigits. We are looking at the end of the word
here the spectral characteristics of the vowel and the high

requency contribution of the fricative at the end can be
learly seen.

The graph in the middle shows the spectrogram as
erived from a HMM that has been trained on a modified
ersion of the TIDigits training data. All training data has
een processed with a tool for simulating the hands-free
peech input in a room [5]. The exponential reverberation
ils can be seen in this graph, most obvious for the vowel

ih”. The “valley” between the vowel and the fricative
epresenting the pause before the “k” does no longer exist.



Finally the spectrogram is shown in the lower graph after
applying the adaptation technique to the clean HMM. The
adaptation has been done with a fixed value for the
reverberation time T60 as only parameter. The reverberation
tails are also visible in this graph. In general the spectrogram
of the adapted HMM shows a lot of similarities with the
HMM trained on reverberant speech data. This indicates that

Figure 2: Spectrograms of the HMMs for the digit “six”
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e new adaptation approach seems to produce useful
esults.

Comparing the spectrograms of the clean and
everberated versions it gets obvious that the trajectories at
dividual frequency bins look quite different due to the

everberation tails. The influence of reverberation can be
escribed as a low-pass filtering in the modulation
requency domain [6]. Thus it should be also worthwhile

adapt the Delta and Delta-Delta coefficients.
Average Delta coefficients can be derived from the

terpolated average spectrograms of the clean and the
dapted HMMs as e.g. shown in figure 2. This can be
ealized by transforming the sequences of spectra to the
epstral domain. Due to the Spline interpolation a
epstrum is available every 10 ms. Thus the standard
rocedure for calculating the Delta coefficients can be
pplied on these sequences of cepstra as it is done in the
eature extraction. Processing the average spectra of the
lean and the adapted HMM this way, the average Delta
epstral coefficients are available for both conditions. The
ifference between these sets of average Delta coefficients

taken to adapt the Deltas of the clean HMM where the
daptation is individually done for each mixture
omponent.

It turned out that best recognition results are not
chieved when adding the difference completely but
eighting the difference with a factor of about 0,7 before

dding it. The Delta-Delta coefficients are adapted in the
ame way.

The only parameter needed for the adaptation is the
everberation time T60. In order to estimate T60 the
ollowing steps are performed. First the recognition of an
tterance is performed with the current set of adapted
MMs. Then the set of clean models is adapted again

everal times by slightly varying the previously estimated
alue of T60. With each of this newly adapted model sets
forced recognition is carried out based on the result of
e first recognition. This value of T60 and thus the new
odel set is selected, which leads to a maximum
kelihood of the recognized sequence. Assuming no
xtreme change of the room acoustics the estimated T60 is
wered or increased by a maximum of 40 ms during this

earch for the maximum likelihood.

3. RECOGNITION EXPERIMENTS

first series of recognition experiments has been run to
erify the applicability of the new adaptation approaches.
he well known TIDigits data base is taken for the

ecognition of single digits and sequences of digits based
n the use of whole word HMMs. 13 Mel cepstral
arameters including the zeroth cepstral coefficient C0 are
xtracted as acoustic features every 10 ms. The cepstral
oefficient C0 is only needed to transform the cepstrum
ack to the Mel frequency domain for the adaptation
rocessing. But C0 is not used for the recognition.

The feature vector for the Viterbi decoding consists of
9 parameters in total, including the Delta and Delta-Delta
oefficients of the 12 cepstral parameters and the
garithmic frame energy as it can be calculated as sum of

quared values from the speech samples. Gender



dependent HMMs with 16 states and 2 mixture components
per state are calculated from the clean training data with the
training tools of HTK [7]. Viterbi decoding and adaptation
has been realized with own software modules.

The recognition of single digits only is considered as first
recognition task. This avoids the superposition of the acoustic
information at the beginning of a word by the acoustic
information at the ending of the preceding word as it is the
case when looking at fluently spoken sequences of digits.

A simulation tool [5] is applied to create versions of the
TIDigits that have been recorded in a room with a
reverberation time of about 600 ms. Word error rates are
shown in figure 3 for the about 2500 single digits that are part
of the TIDigits test data.

The error rate for the clean data is 0,44 %. It increases to a
value of about 7 % for the recognition of the reverberated
digits. Adapting the static frame energy and the static spectral
parameters, the error rate decreases to about 2,7 %. Adapting
additionally also the Delta coefficients, the error rate is
reduced further to a value of about 2 %. This is a first proof
that both new approaches can help to improve the recognition
performance in case of a hands-free speech input. The
recognition performance with adaptation is in the same range
as for the case of training the HMMs on reverberant data. For
this experiment all TIDigits training data has been processed
with the same simulation of a hands-free speech input as for
the test data.

The word error rates for the recognition of all TIDigits
test data are presented in figure 4 including also sequences of
digits. Results are shown for three different conditions. These
are the recognition of clean data, of data recorded in an office
room with a reverberation time of about 0,4 s and of data
recorded in a living room with a reverberation time of about
0,6 s. All data have been created with the already mentioned
simulation tool.

It can be seen for both reverberant conditions that the
error rate can be reduced by adapting the static parameters. A
further improvement can be achieved by additionally
adapting the Delta parameters.

The improvement is not as impressive as in the case of
single digits because the effects of reverberation are more
complex for fluently spoken sequences of words. Some
speakers utter sequences of digits fast with coarticulation
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Figure 3: Word error rates for single TIDigits
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ffects between the digits. Thinking about the further
mearing by the reverberation it will be hard to model
ese effects in the adaptation approach.

The recognition performance is compared to the case
f applying the robust feature extraction scheme as
tandardized by ETSI [8] to training and test data. This
ront-end allows a robust recognition for the conditions of
dditive noise and unknown frequency characteristics. It
rns out that the performance is even slightly worse for
e recognition of the reverberated data in comparison to

pplying an usual cepstral analysis scheme. Training has
lso been done on the clean TIDigits.

4. REFERENCES
1] B. Kingsbury, “Perceptually inspired signal processing

strategies for robust speech recognition in reverberant
environments”, dissertation at UC Berkeley, USA, 1998.

2] C.K. Raut, T. Nishimoto, S. Sagayama, “Model
adaptation by state splitting of HMM for long
reverberation”, Interspeech conference 2005, pp. 277-
280, Lisbon, Portugal, 2005.

3] K. Kinshita, T. Nakatani, M. Miyoshi, “Efficient blind
dereverberation framework for automatic speech
recognition”, Interspeech conference, pp. 3145-3148,
Lisbon, Portugal, 2005.

4] H.G. Hirsch, “HMM adaptation for applications in
telecommunication”, Speech Communication 34, pp.
127-139, 2001

5] H.G. Hirsch, H. Finster, “The simulation of realistic
acoustic input scenarios for speech recognition
systems”, Interspeech conference 2005, pp. 2697-2700,
Lisbon, Portugal, 2005.

6] T. Houtgast, H.J.M. Steeneken, R. Plomp, “Predicting
speech intelligibility in rooms from the modulation
transfer function, I. General room acoustics”, Acustica,
Vol.46, pp 60-72, 1980

7] http://htk.eng.cam.ac.uk
8] ETSI standard document, “Speech Processing, Trans-

mission and Quality aspects (STQ); Distributed speech
recognition; Advanced Front-end feature extraction
algorithm; Compression algorithm”, ETSI ES 202 050
v1.1.1 (2002-10), Oct. 2002.

Figure 4: Word error rates for TIDigits
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