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Abstract

Data-driven speech enhancement (Fingscheidt and Suhadi [1])
aims at improving speech quality for voice calls in a specific noise
environment. The essence of the method are a set of frequency-
dependent weighting rules, indexed by a priori and a posteri-
ori SNRs, which are learned from clean speech and background
noise training data. The weighting rules must be stored for each
frequency bin separately and take up about 400 kBytes memory,
which makes DSP implementations relatively expensive.

In this paper we propose an alternative definition of the
weighting rules which requires only 27 kBytes memory. That is
6.7% of the memory consumption of the original algorithm, with
virtually no loss in performance measured in terms of speech dis-
tortion and noise attenuation. Our approach is to redefine the
weighting rules on the Bark scale and store their parametric repre-
sentation obtained by polynomial curve fitting.
Index Terms: speech enhancement, Bark scale, polynomial curve
fitting.

1. Introduction
Environment noise can severely affect both speech quality and in-
telligibility for voice calls. The purpose of speech enhancement is
to reduce the unwanted noise component as much as possible with-
out introducing noticeable distortions of the useful speech signal.

The general approach to speech enhancement is to apply a
weighting rule to the noisy speech spectral amplitudes for estimat-
ing the clean speech component. The derivation of the weighting
rule is usually formulated as an optimization problem using error
criteria such as Minimum Mean Square Error (MMSE) of spec-
tral amplitudes, log-spectral amplitudes, or perceptually motivated
variants of these [2, 3, 4, 5].

The spectra of clean speech and noise can be modeled using
probability density functions (pdf ). Ephraim and Malah [3, 4] have
successfully employed Gaussian modeling of the real and imagi-
nary part of the clean speech spectrum, and recent research shows
that a Gamma pdf [6] or a Super-Gaussian pdf [7] lead to even
better results.

The selection of the error criterion and of the pdf modeling
the clean speech spectrum is essential, since wrong choices lead to
higher residual noise and distortion of speech. To circumvent this
problem, generalized estimators [1, 8] were derived to compute a
weighting rule by considering training speech data instead of any
explicit formulation of the clean speech spectrum pdf .

While Porter and Boll [8] derived the estimators under as-
sumption of Gaussian-distributed noise, Fingscheidt and Suhadi
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roposed a novel data-driven method for deriving the weight-
rules, called Ideal Gain Averaging (IGA), which relies on
onment-specific training noise instead of explicit modeling of

e spectral amplitude via a parametric pdf .
The weighting rules for each frequency bin are estimated sep-
ly during speech presence and absence using a voice activity

ctor (VAD), and stored in a look-up table indexed by the a pri-
nd a posteriori SNRs [1]. However, the relatively high mem-
equirements of about 400 kBytes makes the implementation
bedded communication devices expensive and unattractive.

We propose a two-step approach for reducing the memory re-
ments of the weighting rules table: (1) the weighting rules
edefined on the Bark scale leading to Bark IGA (B-IGA), and
he new B-IGA weighting rules are parameterized using an R-
r Polynomial Least Square (R-PLS) model. The combined
oach leads to a new set of weighting rules which require only

compared to the original IGA algorithm, with virtually iden-
performance in terms of segmental Speech-to-Speech Distor-
Ratio (SSDR) and segmental Noise Attenuation (NA) [1].
The remaining of our paper is organized as follows: Section 2
ribes the derivation of the B-IGA weighting rules, followed by
utline of the R-PLS parameterization in Section 3. Section 4
ents the experimental results documenting the performance of
ewly introduced algorithm, followed in Section 5 by the con-

ing remarks.

2. Bark-Scale Ideal Gain Averaging
Training the Weighting Rules

noisy speech spectrum at frame l and frequency index k is
icitly computed in training by Yl(k) = Xl(k)+Nl(k), where
0, . . . , K − 1.

An estimate of the noise spectral variance λ̂Nl(k) [9] together
the noisy speech spectrum Yl(k) are used to compute the a

ri SNR ξ̂l(k) using a modification of the decision-directed ap-
ch of Ephraim and Malah [1, 3]

ξ̂′l(k) = w
|Xl−1(k)|2
λ̂Nl−1(k)

+ (1 − w)max
{
γ̂l(k) − 1, 0

}
,

ξ̂l(k) = max
{
ξ̂′l(k), ξmin

}
, (1)

re the parameters w and ξmin are set to 0.98 and respectively
B. The a posteriori SNR is computed as

γ̂l(k) =
|Yl(k)|2
λ̂Nl(k)

. (2)
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Note that the clean speech spectral amplitude estimate |X̂l−1(k)|
from Eq. 1 is replaced by the actual clean speech spectral ampli-
tude |Xl−1(k)|, which is known during training.

Next, for each frame l and each frequency bin k both SNR
values are uniformly quantized within the range [−15, 20] dB with
a stepsize of Δ = 1 dB

Q
{
γ̂l(k)

}
= γ̃l(k) → (i)k,l ∈ {1, ..., Nγ},

Q
{
ξ̂l(k)

}
= ξ̃l(k) → (j)k,l ∈ {1, ..., Nξ}, (3)

where Nγ , Nξ = 35. Along with SNR quantizer indices (i, j)k,l

the respective ideal gain is computed as follows

Gid
l (k) =

|Xl(k)|2
|Xl(k)|2 + |Nl(k)|2 . (4)

Stepping through all frames l of the training database, a set of
ideal gains Γid

(i,j),k =
{
Gid

l (k)
}
∀l

is collected for each frequency
bin k and SNR quantizer indices (i, j). The IGA weighting rule
G(i,j)(k) for the frequency bin k and SNR quantizer indices (i, j)
is obtained by averaging all the gains computed during training [1]

G(i,j)(k) = Γid
(i,j),k

. (5)

The weighting rule on the Bark scale (B-IGA) GBark
(i,j) (m) is

calculated for each subband m by averaging the IGA weighting
rules for all frequency bins within the corresponding subband

GBark
(i,j) (m) =

{
G(i,j)(k)

}
k∈κm

, (6)

where κm represents all frequency bins k in subband m, m ∈
{1, . . . , 19}.

It turns out to be advantageous that separate weighting rules
are computed during speech presence and speech absence. For
each frequency bin, a voice activity detector (VAD) is computed
based on binwise speech absence probability [10], that is operat-
ing on noisy speech. At the end of the training the weighting rules
are smoothed by low-pass filtering (e.g. 5 × 5 Gaussian bell con-
volution filter) with the purpose of achieving better generalization
properties.

Examples of the B-IGA weighting rules trained on car noise
are depicted in Figure 1. It is interesting to note that the weight-
ing rule in speech absence does not completely suppress the sig-
nal. A non-zero weighting rule value in speech absence can help
preserve the speech and noise naturalness, particularly in the tran-
sition from speech presence to speech absence, or vice versa. Also
of interest is that during speech pause the weighting rule at 1 Bark
exhibits lower values than at 14 Bark indicating that the noise is
more strongly suppressed at lower frequencies than at higher fre-
quencies. The explanation for this is that the car noise is concen-
trated mostly in low frequencies.

Another interesting observation is the distribution of SNR in-
dices (i, j) during training. From Figure 1 it can be seen that val-
ues γ̂l(k) < 0 dB do not occur before LP filtering, since the noise
estimator puts an upper bound on the noise spectral variance esti-
mate λ̂Nl(k) ≤ |Yl(k)|2. The a priori SNR on the other hand is
lower bounded by ξmin = −15 dB.

2.2. Applying the Weighting Rules

During testing we need to estimate the a priori and a posteriori
SNR values, which are used to retrieve the corresponding gain
from the weighting rule table.
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re 1: The subband B-IGA weighting rules in speech presence
speech absence: m = 1 Bark and m = 14 Bark. The weight-
ules are trained with car noise.

The a priori SNR is computed using |X̂l−1(k)| in Eq. 1 in-
of |Xl−1(k)|. The a posteriori SNR is computed exactly like

aining. Since the weighting rules for speech presence and ab-
e are different, VAD decision is computed for each frequency
ased on the a priori SNR values [10].

Following the SNR quantization described in Eq. 3, both the
x pair (i, j)k,l and the VAD decision are used to obtain the
opriate gain value Gl(k) = GBark

(i,j) (m) and estimate the clean

ch spectral amplitude X̂l(k) according to

X̂l(k) = Gl(k) · Yl(k). (7)

Storage Requirements

s compute the memory requirement for IGA and B-IGA. As-
ing that each gain value requires 2 Bytes, the IGA approach
rally requires 2 × (1

2
K + 1) × N eff

γ × Nξ = 400 kBytes
= 256, Nξ = 35, N eff

γ = 22). Please note that this value
mputed by considering only the effective a posteriori SNRs
, for which the weighting rules assume non-zero values. In
rast to IGA, the newly developed B-IGA method requires only
×N eff

γ ×Nξ = 58.5 kBytes where M = 19 for the sampling
ency fs = 8 kHz.

3. R-PLS Parameterization
reful examination of the weighting rules reveals that they have
lar shapes. We see from Figure 1 that along the axis ξ̃l(k), the
hting rules are monotonically increasing up to a certain point
then “saturate” to a constant.
This pattern can be seen more clearly if we unfold the 2-D
hting rule columnwisely and observe the weighting gain 1 for
tain a posteriori SNR, as shown in Figure 2.
We notice from Figure 2 that the weighting gain increases
otonically up to a certain point and then saturates. This moti-

us to employ an R-order Polynomial Least Square (R-PLS)

he term weighting gain will be used to denote the 1-D weighting rule
ch a posteriori SNR γ̃l(k)
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Figure 2: Columnwise weighting rule in speech absence for m =
14 Bark (upper) and the corresponding weighting gain for γ̃l(k) =
1 dB (lower).

model for parameterizing the weighting gain. The R-order poly-
nomial function Fi(x) =

∑R
r=0 ci,rx

r approximates the mono-
tonically increasing curve and the saturation level Hsat models
the constant part. The R-PLS approximation is performed for
each B-IGA weighting rule at the end of the training session in
order to compute the parameters Ci = {ci,0, . . . , ci,R} and Hsat

i ,
i = 1, . . . , Nγ . Two extra parameters [jai , jbi ] are required to
indicate the range of the polynomial approximation.

For denoising, the R-PLS parameters are used to reconstruct
an approximation of the B-IGA weighting rules ĜBark

(i,j) (m), and
the SNR quantizer indices (i, j) are applied for retrieving the ap-
propriate gain value Gl(k). Tables 1 & 2 summarize the parame-
terization and computation of the R-PLS weighting rules.

The R-PLS parameters take up only (R+4)
Nξ

of the memory re-
quired by the B-IGA weighting rules tables. Choosing R between
4 and 12, we can store the weighting rules in 13.5 to 27 kBytes,
which represents only 3.3% to 6.7% of the memory required by
the IGA weighting rules. In the next section we show that the new
weighting rules exhibit virtually no performance loss compared to
IGA, although they require 15 to 30 times less storage.

4. Experimental Results
We evaluate the performance of the proposed approach in car
noise. In our experiment, 40 different utterances spoken by 8 dif-
ferent speakers (4 male and 4 female) and 84 car noise signals
are taken from the NTT-AT speech and noise databases [11, 12].
These signals were split into 2 sets of equal size for training and
testing. After combination, 20×42 = 840 noisy speech utterances
at fs = 8 kHz were obtained for each training and testing session.

As a reference system, we employed the a priori SNR driven
Wiener filter [2] and MMSE Short-Time Spectral Amplitude
(MMSE-STSA) [3] with the speech absence probability computed
according to [10]. Noise estimation for all compared approaches
is being done using the minimum statistics by Martin [9]. The
DFT length is K = 256, segment/frame length and frame shift is
N = 160 samples, and window length is 200 samples for both
systems.

Figure 3 shows the trained B-IGA weighting rules for speech
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r each (effective) a posteriori SNR index i do:
ind the a priori SNR range [jai , jbi ], where the weight-

ing rule {GBark
(i,j) (m)}jbi

j=jai
is monotonically increasing

pply Least Squares fitting to compute polynomial coeffi-
cients Ci = [ci,0, . . . , ci,R] that can approximate the

weighting rule {GBark
(i,j) (m)}jbi

j=jai

ompute the saturation level Hsat
i =max{GBark

(i,j) (m)}Nξ

j=1

Table 1: Summary of the R-PLS parameterization.

each SNR indices (i, j)k,l do:
se index ik,l to address the corresponding R-PLS parame-
ers {Ci, H

sat
i , jai , jbi}

ompute the polynomial function Fi(j)
Nξ

j=1 based on the
-PLS coefficients Ci

ompute the R-PLS approximated weighting rule ĜBark
(i,j) (m)

ˆBark
(i,j) (m) =

⎧⎨
⎩

0 if j < jai

Fi(j) if jai ≤ j ≤ jbi

Hsat
i if j > jbi

se index jk,l to address the R-PLS-approximated weighting
ule Gl(k) = ĜBark

(i,j) (m)

e 2: Summary of R-PLS B-IGA weighting rule computation.

ence and absence at 1 Bark, as well as the corresponding 12-
parameterization and the approximation error. We see that
2-PLS parametric representation makes a quasi perfect recon-
tion of the B-IGA rule.

The relative performance in terms of segmental noise atten-
n and segmental speech-to-speech distortion ratio [1] is il-
ated in Figure 4 for the Wiener filter, MMSE-STSA, original
, as well as B-IGA and the associated R-PLS approximation

= {4, 8, 10, 12}. The more a curve is located in the upper
, the less residual noise and speech distortion remain, and the
r the algorithm performs.

From the results we draw the conclusion that the environment-
ndent speech enhancement performs better than both the
er filter and MMSE-STSA, which is also confirmed by infor-

listening tests. We see that B-IGA gives the same performance
A, and that the 12-PLS parameterization of B-IGA is indis-
ishable from IGA with only 6.7% of the memory required by
riginal algorithm IGA weighting rules.

Using values for R lower than 12 in the R-PLS approximation
et a trade-off between performance and storage requirements.
xample 4-PLS gives results comparable to IGA for 30 times

storage (i.e. 3.3%) and is still better than Wiener filtering and
SE-STSA.

5. Conclusion
ronment-dependent weighting rules for speech enhancement
ed on a specific noise type outperform well-known state-of-
rt environment-independent techniques, such as Wiener fil-
g or MMSE-STSA. One deficiency of the original approach,
ed IGA, is the relatively high cost in terms of memory for
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Figure 3: 12-PLS approximation of the B-IGA weighting rule in
speech presence and in speech absence for m = 1 Bark.

storing the trained weighting rules, which makes it unattractive for
embedded DSP applications.

In this paper we presented a new environment-dependent
speech enhancement method, which requires 15 to 30 times less
storage than IGA with virtually no loss in performance. The new
approach redefines the weighting rules on the Bark scale and stores
a parametric representation of them obtained by polynomial mod-
elling of the unfolded gains.
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