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Abstract
We present a new way of modelling the Precedence Effect to en-
able the robust measurement of localization cues (ITD and IID) in
echoic environments. Based on this we developed a localization
system which is inspired by the auditory system of mammals. It
uses a Gammatone filter bank for preprocessing and extracts the
ITD cue via zero crossings (IID calculation is straight forward).
The mapping between the cue values and the different angles is
learned offline which facilitates the adaptation to different head
geometries. The performance of the system is demonstrated by
localization results for two simultaneous speakers and the mixture
of a speaker, music, and fan noise in a normal meeting room. A
real-time demonstrator of the system is presented in [1].
Index Terms: sound source localization, binaural, precedence ef-
fect, reverberant, echoic.

1. Introduction
In real world scenarios noise and echoes are ubiquitous and make
sound source localization on a robot a difficult task. Most systems
for source localization are based on an autocorrelation. In order to
deal with echoes they perform a weighting of the correlation func-
tion [2] or select measures based on a reliability criterion [3, 4]. A
different approach to overcome the echoes is inspired by psychoa-
coustics, more precisely the Precedence Effect, and only uses the
onsets of the signals to measure the localization cues[3]. Since the
task gets easier as the number of microphones and their distance
is increased a multitude of systems uses arrays of microphones[5].
For sound source localization on a robot like Asimo the dimen-
sions of the robot restrict the size of the array and therefore make
the problem more difficult. Furthermore biological systems are
still far better in localizing sound sources in noisy environments
than technical systems and therefore better performance for tech-
nical systems which try to understand and implement solutions
found in biology can be expected. For these reasons we are in-
vestigating binaural source localization. The number of systems
performing binaural localization is much more limited [6, 7] espe-
cially of those which work in echoic environments [8].

Binaural systems commonly work in the frequency domain
(either via FFT or as in our case by using a band pass filterbank)
and use the following cues:

Interaural Time Difference (ITD): The time delay between the
left and right signal.
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teraural Intensity/Level Difference (IID/ILD): The intensity
difference between the left and right signal.

se cues are known to be also responsible for the sound source
lization capabilities of humans [9].
In the following we will first detail our echo suppression
hanism based on the Precedence Effect which enables robust
surements in echoic environments. Then we introduce our ba-
ocalization system and finally present some results.

2. Modeling the precedence effect
known that the Precedence Effect makes localization in echoic
ronments possible for humans. The main findings relevant for
modeling are that a leading sound suppresses localization of a
tly following sound (≈ 40 ms) and that a lagging sound suf-
ntly more intense than the leading sound (10 − 15 dB) over-
es the precedence effect [9]. The most basic model is to per-

the localization only in the onsets of a signal and inhibit fol-
ng onsets for a fixed time span determined a priori [3]. The
ivation behind this is that with the onsets only the direct path
ptured and the measurement is stopped when the echoes ar-
and hence implements the first aspect of the precedence ef-

. In our model we also included the second aspect that a loud
al triggers again the measurement process even if the inhibi-
time is not over. Additionally we changed the measurement
t and do not use the onsets of the signal but the maxima. A
reason for doing so is that the onsets are difficult to determine
bly and a threshold is necessary to make the decision if the
ent rise in energy is really an onset or just noise. Secondly we
e the observation that the cues used for localization are rather
able at the onsets, stabilize until the maximum and then are
cted by the echoes in the part after the maximum. The cues
maller maxima following a maximum at the signal onset are
inated by the echoes. Therefore we implemented an inhibi-
of shortly following smaller maxima. For doing so a nonlin-
moothing of the signal envelope was developed. It acts in two
es. In the first mode the smooth envelope xs(k) rises with
ignal envelope x(k). When the signal envelope changes from

rising phase to a falling phase, hence after a maximum, the
othing changes its mode and now performs a smoothing of the
lope signal with a first order Infinite Impulse Response (IIR)

r. When the smooth signal falls below the envelope signal the
othing changes again in its rising phase. As a consequence
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the onsets are conserved and the signal is only smoothed after the
onsets. A measurement point for the localization cues is gener-
ated one sample before the change from the rising to the falling
phase and hence at the maxima of the signal. For the calculation
of the envelope we use a rectification and low-pass filtering. In or-
der to also inhibit only slightly stronger maxima following shortly
after a maximum we introduced an additional inhibition factor ϑ
in the smoothing process. At the measurement point the smooth
signal is multiplied with this inhibition factor and therefore raised
to a higher value from which it then falls again in the following
smoothing phase (compare Eq. 1 where x(k) is the original enve-
lope signal, xs(k) the resulting smooth envelope, and τ the time
constant of the IIR filter)). The result of this smoothing is shown
in Fig. 1. Our smoothing process generates maxima at 0.03 s and
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Figure 1: The procedure of the nonlinear smoothing is visualized.

0.09 s and suppresses those at 0.13 s and 0.17 s which are usually
effected by echoes. A single sound event produces a maximum in
the left and right channel. Therefore if maxima in the two channels
are closer together than 40 ms only the earlier maximum is kept.

3. Basic System Architecture
Instead of the real Asimo head we used a dummy head for the
results presented here. Microphones were attached to the ears of
the head. In line with our biology inspired approach we first apply
a Gammatone filter bank [10] to the input signals. Stationary noise
was estimated in the beginning of the signals and then subtracted
from the remaining parts.

3.1. Cue Extraction
We use zero crossings to extract the ITD instead of the autocorre-
lation. Zero crossings are robust when applied to bandpass signals,
significantly faster to calculate than an autocorrelation and biolog-
ically more plausible [11, 12, 13]. The ITD is measured at each
zero crossing and then kept at this value until the next zero cross-
ing occurs. For the IID values we calculated

IID(c, k) =
xL(c, k) − xR(c, k)

max (xL(c, k), xR(c, k), xMin)
, (2)

where xL(c, k) and xR(c, k) are the envelope signals of the left
and right channel after noise reduction at sample k and frequency
channel c and xMin the minimal expected signal level which pre-
vents divisions by zero. The cues are evaluated at the time defined
by the non-linear envelope smoothing. Based on the found max-
ima a 10 ms long measurement window is formed. In the current
implementation the measurement window starts 13 ms before the
maximum and ends 3 ms before the maximum. The final cue value
for this channel and instance in time is the mean of the cue value
in the window.
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Mapping Matrix Calculation
he geometry of the artificial head used is rather complex there
straight forward mapping between the cue values and the cor-

onding angles possible. We therefore learn this mapping in an
ne procedure. Sounds from known directions are presented
e head and localization cue values are extracted. An average
value for a given location and a given frequency channel can
alculated from the calibration data. With this average value a
ping between the cue value and the angle can be established.
used 25 azimuth positions ranging from −90° to 90° with 10°
ement and a reduced increment around 0° in order to increase
lution around 0°. The localization is limited to −90° to 90°
uth as we currently do not use combinations of cues or spec-

characteristics of the signals to perform a front/back decision
levation estimation.

Frequency Dependent Cue Confidence
the data used in the mapping matrix calculation the variances
(c, ϕ)2 for the three cues at a given channel c and angle ϕ can

alculated. Based on these variances and the average cue val-
ITDM (c, ϕ) a confidence value for each cue at each channel
aged over all directions M is calculated1:

ηITD(c) =

���� 1

M

90◦�
ϕ=−90◦

ITDM (c, ϕ)2

σITD(c, ϕ)2
(3)

void extremely high values due to variances close to zero a
t to the confidence was set. In a final step the confidence was
alized to the maximal confidence for all cues and all frequen-

in order to have values in the range 0 to1.

Integration of the Cues
final step the different localization cues are integrated to form
alization estimate. For the integration an approach inspired by
al receptive fields was used [1]. The activation of the Gaussian

e centered at angle ϕ and channel c at time instant k

ITD(c, ϕ, k)=wITD(c, ϕ, k) ·

exp

�
−

(ITD(c, k) − ITDM(c, ϕ))2

2σ(c)2

	
, (4)

esents how close the current measure ITD(c, k) is to the cue
e in the mapping matrix ITDM(c, ϕ) for the same channel and
gle ϕ. The parameter σ determines the width of the Gaussian
el. The confidence weight wITD(c, ϕ, k) = η̃ITD(c) · x(c, k)
bines the previously calculated cue confidence η̃ITD(c) and
energy of the underlying channel x(c, k) after noise reduc-
(x(c, k) is either xL(c, k) or xR(c, k) depending on which
nel produced the maximum). The energy weighting enhances
sures from signal parts with high energy as they normally are
e reliable due to their better Signal to Noise Ratio (SNR). Fur-
more, a noise level dependent threshold δN (c) can be used for
k) so that only measurements where the energy of the under-

g channel was above the noise level produce activations. For
s where the mapping is ambiguous, resp. non-injective, multi-
activations for the same cue at different angles appear. This is

For the sake of simplicity only the ITD cue is shown, but an identical
edure was used for the IID cue
xs(k) =

����
���

0 k = 0
x(k) xs(k − 1) ≤ x(k) ∧ k > 0
x(k) · ϑ xs(k − 1) > x(k) ∧ xs(k − 1) ≤ x(k − 1) ∧ k > 0
(1 − 1/τ) · xs(k − 1) + 1/τ · x(k) xs(k − 1) > x(k) ∧ xs(k − 1) > x(k − 1) ∧ k > 0

(1)



a desired behavior as despite their ambiguity there is still informa-
tion about the source location in these cue values. In an integration
phase a histogram for the activations is build by summing over all
channels K and cues:

H(ϕ, k) =

K�

c=1

AITD(c, ϕ, k) + AIID(c, ϕ, k) + AIED(c, ϕ, k)

(5)In the histogram peaks form at the source location.

4. Results
The performance of the system is illustrated by means of some
results recorded with the dummy head mentioned before in a con-
ference room approximately of the size 7 m × 15 m and height of
3 m (reverberation time RT60 = 750 ms). The room had walls
with normal wallpaper, a window front partially covered by blinds
and carpet on the floor. A running air conditioning and the PC fans
caused a constant noise floor. Though the results are only shown
for this room we performed also tests with the real-time system in
a smaller office room (reverberation time RT60 = 330 ms). Also
in this room the system performed good localization. The sam-
pling rate was set to 48 kHz. We used a Gammatone filter bank
with 128 channels where center frequencies are increasing loga-
rithmically from 50Hz to 5 kHz. Before the envelope smoothing
we applied a logarithm to the envelope signal. For the adjustment
of τ = 180 ms we oriented ourselves at the estimated recovery
time for humans from adaptation, the time constants in auditory
models used as a front end for speech recognition, and the dynam-
ics of the recorded signals [14]. The inhibition factor ϑ = 1.07
was determined empirically. The noise threshold δN (c) was set to
the noise floor.

4.1. Comparison to onsets
In Fig. 2 the results of our system are compared to a similar sys-
tem using onsets and a fixed suppression window for following
onsets instead of the maxima and the signal dependent inhibition
proposed here. In the upper plot of Fig. 2 the results of the onset
based system for a speech signal presented via a loudspeaker at
1.3 m and 0° azimuth and an additional speech signal presented
via loudspeaker at 90° and a distance of 3 m are shown. Both sig-
nals were presented at the same loudness. The lower plot contains
the results for our maxima based system. The left graph shows the
activations of the different angles over time. A smoothing along
the time was performed with a Gaussian window of 100 ms width.
On the right graph a histogram for all the activations summed up
over time is given. As can be seen the activations are much better
concentrated on the real location in the case of our system com-
pared to the onsets. The second source has a significant impact on
the localization of the first source in the case of the onset based
system. In the case of our maxima based system the impairments
in the localization of the source at 0° due to the additional source
at 90° are much smaller and in the histogram summed over time
the peak is quite sharp and precise. The second source does hardly
appear in the graph and the summed histogram but this is largely
due to the fact, that it is at 3 m compared to 1.3 m for the first
source. A similar test was performed with only one source where
also our maxima based system yielded much sharper peaks than
the onset based system.

4.2. Localization in noisy conditions
In Fig. 3 localization results are given for a person talking at about
2 m distance and roughly 0° azimuth when additionally noise
recorded from the fans of Asimo was presented via a loudspeaker
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re 2: Comparison between the use of onsets and maxima for
evaluation when two speech signals are presented via loud-
ker. The first is at a distance of 1.3 m and 0° azimuth and the
nd at 3 m and 90°. The upper plot shows the localization re-
for the onset based system and the lower plot for our maxima

d system.

ctly from behind the head and piano music from approximately
°(from the left). The values for the distances and angles are
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re 3: Localization result for our system of a person talking at
stance of about 2 m and 0° when additionally fan noise from
ack and music at −80° were present.

approximative as this was done with a real speaker standing
ont of the system. For this reason we are also not able to give
ecise SNR for the signals. As the signals started one after the
r (first fan noise, then music and finally the speaker) we can
some approximative values though. We calculated them via
ean over the respective segments. The SNR between the mu-

nd the fan noise was about −3 dB in the left ear and −5 dB in
ight ear. Higher SNR values in the left ear are due to the fact
the music was on the left side. The SNR of the speech signal
e combined music and fan noise was approximately 1 dB in

left ear and 2 dB in the right ear, differences in the ears are
to uncertainty of the true position and measurement errors. In
plot in Fig. 3 the music starts at 0 s and the speech signal at
The part with only the fan noise present was cut out for visu-
tion. As can be seen from the plot the fan noise and music are

ost completely suppressed in the histogram by the noise reduc-
. The peak in the histogram on the right side is much wider



than in the previous cases and the main peak is not at 0° but at 5°.
In this setup the absolute position of the speaker is not known but
in the real-time system the localization has a precision such that
the head is facing the speaker after it turned to the speaker [1]. For
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Figure 4: Localization result for our system of a person talking at
a distance of about 2 m and 60° when additionally fan noise from
the back and music at −80° were present.

the setup in Fig. 4 the music and the fan noise were kept at the
same location and level but the speaker was now at roughly 60°.
The SNR between the music and the fan noise was about 0 dB,
in the left ear and −2 dB in the right ear. Changes in the values
compared to the previous setup are due to imprecsions in the mea-
surements. As SNR between speech and combined fan and music
we estimated in this scenario −3 dB in the left ear and 0 dB in
the right ear. The SNR also varies due to the fact that the speaker
could not utter at exactly the same loudness in each trial. The mu-
sic starts at 0 s and the speech signal at 1.8 s. As can be seen the
main peak forms at 70° and some side peaks in the direction of
the music are present. In general we see a trend for more precise
localization at around 0° and decreasing performance at the outer
regions. This is due to the fact that the cue sensitivity is highest at
0° and decreases to the side. Finally Fig. 5 shows a setup where
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Figure 5: Localization result for our system of a person talking at a
distance of about 2 m and −30° when additionally fan noise from
the back and music at −80° were present.

the speaker was at roughly −30°, hence at the same side as the
music. The remaining setup remained unchanged. The SNR be-
tween the music and the fan noise was about −2 dB, in the left
ear and −4 dB in the right ear. As SNR between speech and com-
bined fan and music we estimated −1 dB in both ears. The music
starts at 0 s and the speech signal at 1.9 s. As can be seen the main
peak forms at −30° and some side peaks in the direction of the
music are present. The music interferes more with the localization
in this case as it is on the same side but the speaker is still correctly
localized.

5. Discussion
We developed a system which is able to perform sound source lo-
calization with 2 microphones in strongly echoic and noisy con-
ditions. Our system was inspired by the human auditory system
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ch is reflected in the binaural setting with a dummy head, the
tory preprocessing by the Gammatone filter bank, the use of
crossings, the neural integration of the cues, and the model-

of the precedence effect. Especially for the precedence effect
argely modified and extended previous approaches which re-
on onsets. Our system uses the maxima of the envelope signal
performs a signal dependent, not fixed as in previous systems,
bition of shortly following maxima. The faster the signal falls
shorter the inhibition time. A following maximum with suffi-
heigth overwrittes the inhibition in any case. These properties

in line with the findings from psychoacoustics. We compared
esults of our system to an onset based system. There we could

that the localization results of our system are more reliable
precise. Furthermore we evaluated the performance of the sys-
in a three source scenario with very bad SNR for the target sig-
Here performance degrades in comparison to the single and

source scenario but results are still good enough for the use on
bot. The use of the zero crossings enabled the implementation
e system in real-time[1].
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