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Abstract
In this paper, we propose a novel approach to improve the perfor-
mance of automatic speech segmentation techniques for concate-
native text-to-speech synthesis. A number of automatic segmen-
tation machines (ASMs) are simultaneously applied and the final
boundary time marks are drawn from the multiple segmentation
results. To identify the best time mark among those provided by
the multiple ASMs, we apply a candidate selector trained over a
set of manually-segmented speech database. The candidate selec-
tor defines a mapping from the phonetic boundary to the best ASM
index which will output the time mark that may be closest to the
manual segmentation result. The experimental results show that
our approach dramatically improves the segmentation accuracy.

Index Terms: speech synthesis, unit selection, speech segmenta-
tion.

1. Introduction
Nowadays, the unit selection technique [1] has become the most
widely used approach in the area of text-to-speech (TTS) syn-
thesis to realize high-quality synthetic speech. In this technique,
synthetic speech is generated by concatenating a series of units
(i.e. waveform segments) which are selected from a large speech
database. For that reason, the quality of synthetic speech critically
depends on the quality of the selected units.

The key task for building the database is to mark the bound-
aries of each speech segment according to the given transcript.
Although manual labeling is generally regarded as the most re-
liable way to get the boundary time marks, it is usually too time-
consuming and labor-intensive. Therefore, an automatic method
for the segmentation task is considered to be more desirable and
practical, especially when a huge amount of speech data are to be
segmented.

In the literature, a variety of approaches to automatic speech
segmentation have been developed [2]-[8]. Most of the developed
approaches are based on the Hidden Markov Model (HMM) which
is widely used in the area of automatic speech recognition although
some other techniques such as the dynamic time warping (DTW)
method [2] are also applied. In the HMM-based framework, the
model parameters are trained based on the given speech data with
the corresponding transcripts and then the trained HMMs are used
to align the training data along the associated transcripts.

It is generally known that various model configurations such
as the number of states for each phone, number of mixture com-
ponents for each state, context-dependency and the feature vec-
tors extracted from the speech waveform produce different seg-
mentation results [3]. Context-dependent HMMs are also known
to make some systematic errors (or bias) since they are always
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ed in the same phonetic context [4]. To compensate the er-
some statistical techniques such as the boundary specific cor-
on (BSC) [5] and statistical correction of context dependent
dary marks (SCCDBM) [4] are applied to correct the segment
daries which are provided by HMM-based alignment. Even
the boundary correction, however, the performance of an au-

atic HMM-based segmentation technique is usually found in-
cient to be directly applied to TTS. In order to alleviate this
culty, additional post-processing approaches are usually ap-

to refine the segment boundaries with the use of different
res e.g., F0 contour [6] and spectral variation function (SVF)

On the other hand, in [8], multiple independent acoustic mod-
re adopted and the segmentation results are averaged to yield
al result.

In this paper, we propose a novel approach to estimate reliable
entation boundaries of the speech data when a limited amount
anually-segmented data is available. We apply multiple sep-
algorithms to obtain a number of segmentation results, and

al decision for each segment boundary is made by combining
multiple segmentation results depending on the robustness of

model against the specific boundary type.

2. Automatic Segmentation by
Boundary-Type Candidate Selection

(ASBTCS)
Overview

us define an automatic segmentation machine (ASM) to be a
em that produces a sequence of boundary time marks tu =
. . . , tu

nu
} given an utterance u and its corresponding phonetic

ls pu = {pu
0 , pu

1 , . . . , pu
nu

} where nu is the number of pho-
boundaries of u and tu

i represents the time mark for the pho-
boundary between pu

i−1 and pu
i . An ASM applies an algo-

to align an utterance along its phonetic labels. For that pur-
, it may adopt an HMM-based, DTW-based approaches, or the
-processing techniques for boundary refinement. In this paper,
interest lies on how to determine the boundary marks when
segmentation results from various ASMs are given instead of
sing on each specific ASM algorithm.

To gain an insight as to how the boundaries are determined
n ASM, let us consider the case of the HMM-based tech-
e. The HMM-based ASM depends on a collection of (context-
pendent or -dependent) phone models which have been con-
ted through the training procedure. When a speech signal
the corresponding phonetic transcript are given, a sequence
ature vectors such as the mel-frequency cepstral coefficients
CCs) are extracted for each frame and then each feature vec-
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Figure 1: Overview of the proposed ASBTCS method.

tor is aligned along the corresponding HMM state by applying the
Viterbi algorithm. Strictly speaking, all the HMMs that are used
to segment the given utterance contribute to the determination of
all the phone boundaries. However, it is reasonable to assume that
a phone boundary is dominantly affected by the two adjacent (left
and right) phone models. If we define the boundary type, bu

i , for
the time mark tu

i as the two phonetic identities adjacent to this time
mark, i.e. bu

i = (pu
i−1, p

u
i ), the estimation error for tu

i , based on
the above assumption, will vary according to the trained models
for both pu

i−1 and pu
i . Therefore, an ASM will show a different

performance for each boundary type.

Now, suppose that there are a number of ASMs which use a
variety of algorithms of their own. In this case, our goal is to make
a final segmentation result by utilizing all the available ASMs.
One of the promising ways would be to apply a separate ASM
for each boundary type depending on the phonetic characteristics.
In this paper, to implement this idea, we propose a novel approach
called the Automatic Segmentation by Boundary-Type Candidate
Selection (ASBTCS). The overall idea of the proposed ASBTCS
method is shown in Fig. 1. Firstly, multiple boundary sets denoting
the collection of boundary time marks are produced by multiple
ASMs which adopt different methods from each other. Then, for
each boundary type the candidate selector chooses the best time
mark among the boundaries provided by the multiple ASMs. In
this respect, the candidate selector defines an one-to-one mapping
between the boundary type and the ASM index such that it can
identify the ASM which results in the minimum segmentation er-
ror for the given boundary type. The candidate selector is con-
structed using a training procedure where the manually-segmented
data are considered the target values for the boundary time marks.
For each boundary type observed in the training database, the av-
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e time differences between the target time marks and those
ided by the ASMs are computed and the ASM with the mini-
error is selected as the winner for the given boundary type.

Training of Candidate Selector

t of manually-marked boundaries are required for the train-
of candidate selector in the ASBTCS method. Since it is usu-
cumbersome to conduct manual segmentation over the en-

speech database, the candidate selector is trained based on a
ted portion of the whole utterances. Let us denote the man-
egmentation result as M = {tMi }i=1,...,NM , where NM is the
number of manually-segmented boundaries. If the num-

of ASMs considered in the candidate selector is NASM, we
NASM candidate boundary sets {C(1), . . . , C(NASM)} where

) = {tC(k)
i }i=1,...,NM represents the time marks produced by

k-th ASM. We should note that the boundary type (pi−1, pi)
M
i is the same to that for each candidate time mark t

C(k)
i .

For each boundary type, the candidate selector outputs the in-
of the ASM which produces the minimum error with respect
e manual segmentation results. Let θ and Sθ denote a bound-
type and the corresponding output of the candidate selector,
ectively. Then,

Sθ = argmin
k∈{1,2,...,NASM}

ξ(C(k)〈θ〉, M〈θ〉) (1)

re M〈θ〉 is a subset of M to which only the time marks associ-
with the boundary type θ belong and C(k)〈θ〉 is defined in the

e way. In (1), ξ represents a cost function specified in terms
e two boundary sets. Since the cost function ξ should account

some distance metric, it can be defined, for example, as the
lute errors between the two boundary sets given as follows:

ξ(C(k)〈θ〉, M〈θ〉) =
X

i: tMi ∈M〈θ〉

˛̨
˛t

C(k)
i − tMi

˛̨
˛ . (2)

Clustering of Boundary Types

important for robust candidate selection that there are suffi-
t amount of manually-segmented data for each boundary type.
e, however, the size of the manually-segmented data is usually
ll, training of the candidate selector does not guarantee a robust

ate for all the boundary types. Furthermore, some boundary
s are not even present in the manually-segmented data. In or-
to complete our segmentation technique, we should also have
idate selection rules for those unseen boundary types.

To alleviate this difficulty, we apply a decision tree [9] to clus-
he boundary types. The decision tree is built as follows: First,
oundaries of the manually-segmented data are pooled together
e root node of the tree. Then, this pool is subsequently split

nto two child nodes according to phonetically-motivated ques-
s, such as the place of articulation, the voicing of phone, and
receding and following phonetic context of the boundary. The
at each node is made such that the sum of two child nodes’
lute errors could be minimized when the ASM with minimum
n absolute error is selected at each node. The stopping crite-
is to ensure at least δ data points in each leaf node. After the
sion tree has been built, the candidate selector is trained such
it can define an one-to-one mapping between each leaf node
e tree and the ASM index.



3. Experimental Results
In order to evaluate the performance of the proposed ASBTCS
method, we applied 36 candidate ASMs, all were built based on
the HMM approach. The speech database used in our experiment
consisted of 5000 Korean utterances (286082 phones) which were
spoken by a professional female narrator in a studio environment
and were recorded in 16-bit precision with 16 kHz sampling fre-
quency. In the speech database, manual segmentation results were
available for 2000 utterances among which a maximum of 1600
utterances were used for the training of candidate selector and the
remaining 400 utterances were reserved for performance evalua-
tion.

To train the HMM-based ASMs, a feature vector was extracted
for each frame with 24 ms window length and 3 ms frame shift.
The feature vector was composed of 12 MFCCs, normalized log
energy, and their first and second order delta components (39-
dimension in total). The basic structure of the phone HMMs was
a left-to-right type without any state skipping. In addition, the ob-
servation distribution specified in each state was characterized by
the Gaussian mixture model with a finite number of mixture com-
ponents. The 36 ASMs were established by varying the number of
states for each phone HMM, the number of mixture components
per each state, and the manner of incorporating context depen-
dency. The number of states for each phone model was allowed
to vary from three to five and 1∼6 Gaussians were used to repre-
sent the observation distribution of each state. Both the context-
independent monophone and context-dependent triphone models
were trained for each HMM structure configuration resulting in
total 36 ASMs. All the candidate ASMs were trained over the
4600 utterances (excluding the evaluation data) without any man-
ual segmentation information, and no post-processing techniques
for boundary refinement were employed. Training of the HMMs
was carried out with the use of HTK [10] software where state ty-
ing was applied to estimate the parameters of the triphone models.

Each of these ASMs was applied to segment the utterances,
and the obtained results were taken as candidate sets for the
ASBTCS method. For the training of candidate selector, 400
manually-segmented utterances were used. There were 949
boundary types observed in the training database, while 1218
boundary types existed in the entire database. To cope with the un-
seen boundary types and to select the candidates in a robust way,
a decision tree was built based on the training database such that
there should be at least δ data points for each leaf node of the tree,
yielding 642 leaf nodes for δ = 5. Finally, the candidate selector
was trained to define an one-to-one mapping from each leaf node
to the ASM index.

In order to investigate the effectiveness of applying multiple
ASMs, we evaluated the segmentation performance of the pro-
posed method by varying the number of candidate boundary sets
included. The performance was evaluated by measuring the mean
of absolute time differences between the manual time marks and
those obtained from the automatic segmentation techniques. The
curves in Fig. 2 demonstrate the performance improvement of the
ASBTCS method as more ASMs contributed to the boundary de-
termination. For the purpose of comparison, we also plot the per-
formance of each single ASM which was newly incorporated in
the ASBTCS approach. From the result, it is noted that the perfor-
mance of the ASBTCS approach improved even though the newly
incorporated single ASM performed worse than the other ASMs.
This phenomenon somewhat confirms that it is advantageous to
apply different ASMs depending on the given boundary type.
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(a)

re 2: Performance of the ASBTCS method (400 training data
andidate selector, δ=5) as the number of ASMs incorporated
rying. The ASMs are added (a) in random order (b) in the
r of decreasing performance.

To compare the proposed method with other previous
tiple-model-based approaches, we also evaluated the perfor-
ce of the algorithm presented in [8] where the final segmen-
n result is obtained through simple averaging and the result
own in Fig. 2, where we can see that the ASBTCS method
erformed the simple averaging scheme. In Fig. 2(a), both the
TCS and the averaging method showed a decreasing trend of

r as more ASMs participated in each method. On the other
, Fig. 2(b) shows that when ASMs were added in the or-

of decreasing performance the performance of the averaging
od became degraded while that of the proposed method did
Therefore in the ASBTCS method, adding more ASMs seems
e rather safe and is expected to have some positive effect on
nal performance even in case each ASM’s performance is not

ood.

For a more quantitative analysis, we compared the perfor-
ces of the ASBTCS approach, the simple averaging method,
the single ASM which had achieved the best overall perfor-
ce among the 36 ASMs. The best ASM chosen was the one
context-independent, 5-state and 1-mixture HMM. This time,
ounted the relative number of time marks which lied within
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Figure 3: Percentage of the boundaries within some tolerances
with respect to the manual time marks.

a specified distance from the corresponding manual boundaries.
The result is given in Fig. 3 where we can see that the ASBTCS
approach made more boundary time marks placed closer to those
of the manually-segmented data than the best single ASM for all
tolerances and than the averaging scheme in the regions below 40
ms.

Fig. 4 shows how the segmentation performance of the AS-
BTCS approach was affected by varying δ, which specifies the
minimum number of data kept in each leaf node of the decision
tree. In this experiment, we also varied the amount of training ut-
terances from 50 to 1600. For the purpose of comparison, we also
display the results of the simple averaging technique and the best
single ASM. In the figure, the performance of the proposed method
using only 50 utterances was better than the averaging method.
The performance was seen not sensitive to δ and a variety of val-
ues for δ worked quite similarly.

4. Conclusions
In this paper, we proposed a new approach called ASBTCS to im-
prove the performance of automatic speech segmentation for con-
catenative speech synthesis. It has been found beneficial to select
the best ASM among a variety of ASMs depending on the bound-
ary type. The experimental results have shown that the proposed
method remarkably improves the accuracy of the automatic seg-
mentation technique.
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