
Phone Recognition Analysis f

Le Zhang, Steve R

The Centre for Speech Tech
University of Edinburgh, Edinb

{Zhang.Le,S.Renals}

Abstract
The trajectory HMM has been shown to be useful for model-based
speech synthesis where a smoothed trajectory is generated using
temporal constraints imposed by dynamic features. To evaluate
the performance of such model on an ASR task, we present a tra-
jectory decoder based on tree search with delayed path merging.
Experiment on a speaker-dependent phone recognition task using
the MOCHA-TIMIT database shows that the MLE-trained trajec-
tory model, while retaining attractive properties of being a proper
generative model, tends to favour over-smoothed trajectory among
competing hypothesises, and does not perform better than a con-
ventional HMM. We use this to build an argument that models
giving better fit on training data may suffer a reduction of discrim-
ination by being too faithful to training data. This partially ex-
plains why alternative acoustic models that try to explicitly model
temporal constraints do not achieve significant improvements in
ASR.

Index Terms: trajectory HMM, acoustic models, MOCHA-
TIMIT

1. Introduction
For decades, the mainstream acoustic models in ASR have been
dominated by the Hidden Markov Model (HMM) and its vari-
ants. The HMM performs surprisingly well considering various
assumptions it makes, namely piecewise stationarity within states,
the framewise independence assumption on state output given cur-
rent state, and simple geometric duration distribution [1]. Al-
though none of these assumptions holds for real speech, the in-
dependence assumption, which makes it difficult for the HMM
to model temporal correlation within speech data, is regarded by
many to be the major drawback of the use of HMMs in speech
recognition.

A number of alternative models have been designed to explic-
itly model temporal correlations in acoustic features, such as the
Segmental Models [2], Hidden Dynamic Models [3], and Linear
Dynamic Models [4]. When viewed as generative models, those
models have a better modelling power for modelling acoustic tra-
jectories, and hence produce a higher likelihood for the training
data. However, in practice the added complexity and computa-
tional cost of these models are not strongly justified by their per-
formance over the conventional HMMs. It is therefore interesting
to ask why models that give a better fit to acoustic data do not
produce lower speech recognition error rates compared with sim-
ple HMMs for which almost every assumption conflicts with real
speech observations. Unfortunately, fully answering this question
requires a better understanding of acoustic variability than we cur-
rently have [5], mainly due to the highly complex nature of human
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ch production process.

As a first step in providing some insights on modelling speech
mics, we study the behaviour of a recently proposed trajectory
M that handles temporal acoustic correlation through dynamic
res [6]. Themain difficulty in applying the trajectory model to
is that the search space is an order of magnitude larger than
nventional HMM decoding network with the same structure,
e model imposes no conditional independence assumption on
tate output. In this paper we present a trajectory decoder based
ree search with delayed path-merging, and analyse its perfor-
ce on an English speaker-dependent phone recognition task.

The rest of this paper is organised as follows. Section 2 gives
ef introduction to trajectory HMM. In section 3 we describe in
il a trajectory decoder based on tree search with delayed path
ging. Decoding analysis on an English phone recognition task
ven in section 4. We then conclude with a discussion.

2. Trajectory HMM
ancing ASR performance through the use of dynamic features
been a standard practice since 1980s. However, training a con-
ional HMM directly on the augmented feature vectors will
lt in an inconsistent model, as the use of dynamic features
ctively introduces inter-frame dependence that an HMM can
handle. Recently a theoretical framework called the trajectory
M has been set up to explicitly model the constraints imposed
ynamic features [6].

For a given HMM state sequence q = {q1, q2, . . . , qT } cor-
onding to an utterance with T frames, the likelihood func-
of the trajectory model is defined as a function of c =

, c2
′, . . . , cT

′]′, the sequence of static feature vectors, rather
as a function of o = [o1

′,o2
′, . . . ,oT

′]′, the sequence of
ented feature vectors, which is just a linear transformation
. Without imposing any conditional independence assump-
the likelihood function of observing c given state sequence q,
the model parameters λ, can be obtained by performing a per-
ance normalisation of the original HMM likelihood function
| q, λ):

p(c | q, λ) =
1

Zq

p(o | q, λ) (1)

re Zq is a normalisation term that depends on q:

Zq =

Z
p(o | q, λ)dc (2)

Assuming the static acoustic feature has a dimension of M ,
cally 13 for MFCC-based front-end, the normalised p.d.f.
| q, λ) over an utterance of T frames is a TM -dimtionsonal
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Gaussian:

P (c | q, λ) = N (c | cq,Pq, λ)

satisfying:

Rq = W
′

Σq
−1

W

rq = W
′

Σq
−1

μq

Pq = R
−1
q

Rqcq = rq

(3)

here cq andPq are the TM by 1 mean vector and TM by TM full
covariance matrix depending on the state sequence q. μq and Σq

are the mean vector and covariance matrix of the corresponding
conventional HMM.W is a deterministic 3TM by TM matrix to
transform the static feature vector sequence c into o, the sequence
of the augmented feature vectors:

o = Wc (4)

The trajectory HMM can be trained using maximum likelihood
estimation with viterbi path approximation. The reader is referred
to [6] for more details.

Compared to a conventional HMM, the output of a trajectory
HMM satisfies the constraints imposed by the dynamic features,
resulting in a smoothed trajectory that varies within a single HMM
state. The trajectory HMM has been successfully used as a genera-
tive model in HMM-based speech synthesis [7]. Promising results
on ASR have also been obtained using an N-best list re-scoring
paradigm [6]. A more principled way of using a trajectory model
is to apply a “trajectory decoder” directly on the acoustic input,
which will be described in the next section.

3. Decoding
Decoding with a trajectory model is much more difficult than de-
coding using a conventional HMM. Firstly, the state output at time
t, ct, depends on the whole state sequence q, making the usual
viterbi algorithm inapplicable. Secondly, as the number of hypoth-
esis grows exponentially to the length of the utterance, we must re-
sort to some approximations to make the search tractable. Thirdly,
the formula of trajectory likelihood (3) involves high dimensional
matrix manipulation, and is more expensive to evaluate than con-
ventional HMM likelihood. The rest of this section will present
a trajectory decoder based on tree search, which can be seen as a
variant of the D-frame delayed viterbi algorithm [8].

3.1. Decoding as a tree search with delayed path merging

The decoding problem in ASR can be phrased naturally as a tree
search, where nodes at the t-th level of the search tree represents
valid HMM states at time t. Starting from an empty root node at
time 0, we gradually extend the leaf nodes of the tree using nodes
subject to language model constraints. At time T the path with the
highest score will be picked up as the decoding result. Figure 1
illustrates a search tree with only two HMM states.

It is easy to see that the tree search procedure outlined above
is infeasible to implement as the number of paths grows exponen-
tially as t increases. For a conventional HMM, this exponential
growth in path numbers can be avoided by assuming that nodes at
the t-th level of the tree only depend on nodes at the (t − 1)-th
level (viterbi assumption). Therefore two paths are equivalent if
their last two nodes have the same state. We can generalise this
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re 1: Illustration of path merging for a search tree of a two-
HMM. Two paths 1 → 1 → 1 → 2 and 2 → 1 → 1 → 2will
erged as they have the same partial path within the shaded
ow spanning 3 frames (D = 1, L = 1). Only the one with a
er partial likelihood score will be retained.

further for trajectory HMM by assuming two paths are equiv-
t if they share the same fixed-length history. More specifi-
, for given integers D ≥ 1, L ≥ 1. two paths qt+L

1 and
L are considered to be equal if qt+L

t−D = {qt−D, . . . , qt+L} =

D, . . . , pt+L} = pt+L
t−D . Here D and L are the number of

es we need to look back/ahead in order to compute the likeli-
score at time t. In other words, whenever we see two equiva-
paths we only need to retain the one with the higher score and
ard the other. We refer the process of retaining the highest-
e path out of its equivalent class Ψ(qt+L

1 ) = qt+L
t−D to as path

ging. After extending all the nodes at frame t− 1 to t, we per-
path merging for all paths within a window [t − D, t + L],
h effectively discards half of the hypothesis at frame t. The
l beam pruning can then be applied to further reduce the hy-
esis set. This process is illustrated in figure 1. The main de-
ng algorithm is outlined below:

rithm 1 Trajectory Decoding Algorithm
t = 0: Initialise search tree with an empty root node
for t = 1 to T do
Extend all nodes at time t − 1 to time t subject to LM con-
straints
Compute partial trajectory likelihood for all nodes at time t
Perform path merging for all paths within a window [t −
D, t + L]

Return the highest-score path at time T

Recursive likelihood calculation

rder to apply the tree search algorithm, which operates in a
-synchronous fashion, we can write the trajectory likelihood
| q, λ) in a recursive form described in [8]:

p(c | q, λ) =

TY
t=1

1

Z
(t)

q
t+L

1

p(ot | qt, λ) (5)

re p(ot | qt, λ) is just the conventional HMM state output

tion at time t. Z
(t)

q
t+L

1

is the normalisation term at time t and



depends on the partial state sequence up to time t + L:

Z
(t)

q
t+L

1

=

p
(2π)M |U(t,t)

q
t+L

1

|−1

p
(2π)3M |Σqt

|
(6)

· exp

j
−

1

2

„
μqt

′Σ−1
qt

μqt
−

»
g

(t)

q
t+L

1

–
′

g
(t)

q
t+L

1

«ff

where U
(t,t)

q
t+L

1

denotes the t-th diagonal element of the matrix

U
q

t+L

1

, which is the upper triangular matrix of the Cholesky de-

composition of the precision matrix Rq = Uq
′Uq, and g

(t)

q
t+L

1

is the t-th element of the vector gq, which is the solution of
Uq

′gq = rq.

4. Analysis of decoding result
To analyse the performance of the proposed decoding algorithm,
we ran an English phone recognition task using the speech data
from the MOCHA-TIMIT database 1, which contains one male
speaker (msak0) and one female speaker (fsew0) with 460 TIMIT
utterances for each. The first 400 sentences were used for training
a monophone trajectory model, and the remaining 60 sentences
were used for testing. We use the standard 12 MFCC features plus
the log energy, and their delta coefficients. The vocabulary consists
of 45 phones, each of which is modelled by a 3-state left-to-right
HMM with no skip. The output of HMM state is modelled by a
single Gaussian with diagonal covariance. A phone loop grammar
was used for decoding.

We started from a conventional HMM trained using HTK.
Then the model parameters were updated using the HMM seg-
mentation. After that, the optimal state boundaries were obtained
by running the decoder in alignment mode with a large delay
(D = 6). Then the model parameters were updated again based
on the new state boundary information. This process was iterated
a few times until the trajectory likelihood on the training data sta-
bilised. For decoding, we used a merging window of 5 frames
(D = 2, L = 2) with no pruning. The number of active nodes
during decoding is of the order of 107 under this setting. We note
that it is possible to get better result than what is presented here
by using larger delays (D ≥ 3), although heavy pruning had to be
employed so that the decoder can run on a machine with 2G RAM.
Since the primary focus of this paper is error analysis, we did not
include results from larger D, which can be biased due to search
errors caused by pruning. Table 1 gives the phone error rate.

Table 1: Phone error rates on MOCHA data
HMM trajectory

fsew0 50.56% 54.79%

msak0 52.68% 58.96%

The phone error rates of the trajectory HMM (54.79% and
58.96%) are higher than a conventional HMM (50.56% and
52.68%). To help categorise the errors, we now introduce some
notation to define the concept of phone level matching alignment.
Let twi

denote the start frame of the i-th phone in a transcription,
then the duration and the central position of the i-th phone can be

1http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html.
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ten as:

d(wi) = twi+1
− twi

(7)

c(wi) = twi
+ d(wi)/2 (8)

define two phones wi, wj have a matching alignment if:j
|d(wi) − d(wj)| < δ
|c(wi) − c(wj)| < ε

(9)

re δ and ε are small integers, and are set to 2 and 3 in this
riment. Also we define f(wi) to be the per-frame likelihood
e i-th phone wi averaged over its duration d(wi). Using the
e definitions, we are able to classify phone recognition errors
three groups:

. modelling error: A phone wrec in the recognised transcrip-
tion receives a much higher score than the correct phone
wref with the matching alignment (as defined by (9)) in the
reference transcription:

f(wrec) − f(wref ) > Δ (10)

whereΔ is a positive number (Δ = 1.0 in this experiment).

. confusion error: A phone wrec in the recognised transcrip-
tion receives a score higher than the correct phone wref

with the matching alignment in the reference transcription,
but the difference in score is relatively small:

f(wrec) − f(wref ) < Δ (11)

. insert/delete error: Because the model is capable of gener-
ating smoothed trajectory, sometimes a phone trajectory is
smoothed excessively to give a good fit to data, which is
not the case in the reference transcription where the correct
alignment corresponds to two phones wref1, wref2.

f(wrec) − f(wref1 wref2) > 0 (12)

It is possible to find an over-smoothed phone spanning over
more than two phones, although we find two phones are
most common.

mples of all three kinds of errors are illustrated in figure 2,
re smoothed trajectories are generated for both decoded tran-
tion (above) and reference transcription (below) for one ut-
ce in testing set. The first shaded area highlights a confusion
r where both phone p and phone y have a good fit to the data.
second shaded area shows an insert/delete error: phone y is
othed excessively to give a better fit to the data than the correct
e sequence ii-@, which explains why it is picked up by the
der. A modelling error can be seen in the third shaded area
re the wrong phone jh has a much better fit to the data while
orrect phone s is not.
The distribution of the three error groups for the baseline
M and the trajectory HMM is given in table 2. The major-
f errors of both models comes from modelling error (53.72%
62.42%), which is due to the mismatch between the learned
el and data. This type of error is difficult to get rid of unless
ore complex model, such as a Gaussian mixture, is used to
nce the modelling power. The trajectory HMM, while in gen-
has a better fit to the speech data, actually committed 8.7%
e modelling error compared to the baseline HMM. This sug-
s that the trajectory HMMmay suffer a degradation of discrim-
on by favouring over-smoothed phone trajectory that fits data
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well among competing hypothesises. Both models have a similar
number of insert/delete errors (28.41% and 26.39%), which can be
reduced by applying some sorts of penalty measure to control the
length of phone alignment. For confusion errors, trajectory HMM
makes 6.7% fewer errors than the conventional HMM (11.19% to
17.88%), which is still a large portion. Training them discrim-
inatively may provide better discrimination between acoustically
similar phones in this case.

Table 2: Distribution of different error groups
modelling confusion insert/delete

HMM 53.72% 17.88% 28.41%

trajectory 62.42% 11.19% 26.39%

5. Discussion
The decoding result of the trajectory HMM brings out some in-
teresting findings: Firstly, the fact that the trajectory HMM can
generate smoothed trajectory for speech data does not necessarily
mean a lower recognition error rate. In contrast, we observed that
under certain conditions it may be difficult for a model being too
faithful to the data to have good discrimination between competing
hypothesis. This partially explains why previously proposed alter-
native acoustic models that explicitly account for temporal corre-
lation in speech, such as Segmental Models and Linear Dynamic
Models, are not vastly superior to HMMs in practice. Secondly,
like MLE-trained HMMs, the MLE-trained trajectory HMM also
suffers from weak disambiguation between acoustically similar
phones. Training the model discriminatively may help improve
the ASR performance, albeit more computational expensive.
It is worth mentioning that we do observe a reduced error rate

on the ATR data as used in [6] via N-best re-scoring, but it does not
happen on the MOCHA data when direct decoding is employed.
We note the following factors may contribute to the diverse results:
1. our baseline system has a higher error rate than [6]’s 19.7%,
which suggests the MOCHA data we used is more noisy; 2. the
search space of a full decoder is much larger than that of N-best re-
scoring, and a short delay (D=2) has to be used to make decoding
tractable, which compromises the performance.
In closing this paper, we emphasis that when seeking alteit-

ernative acoustic models for speech recognition, one should pay
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e attention on the discriminative power rather than the fitness
een learned model and training data. The increase of likeli-
d on training data does not always lead to improved ASR per-
ance, as is the case in this paper. Our future work will include
hods to regularise the over-smoothness of the output trajectory
ecoding and applying discriminative training to the model.
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Figure 2: Smoothed mean trajectories for the first MFCC coefficient generated from transcription returned by the decoder (above) and the
reference transcription (below) for one utterance in the test set. The shaded areas correspond to a confusion error, an insert/delete error
and a modelling error, respectively.
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