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Abstract

Features that model temporal aspects of phonemes are impor-
tant in speech recognition. One method is to use linear discrimi-
nant analysis (LDA) to find discriminative features from a spectro-
temporal input formed by concatenating consecutive frames of
short-time spectrum features. Others use e.g. neural networks to
process longer span spectral segments to improve recognition ac-
curacy. Still the most widely used method for including temporal
cues is to augment the short-time spectral features with simple time
derivatives.

In this paper a new feature estimation method based on pair-
wise linear discriminants is presented. We compare it and some
of its variants to traditional MFCC features and to LDA esti-
mated features in a large vocabulary continuous speech recogni-
tion (LVCSR) task. The features obtained with the new estima-
tion method show significant improvements in recognition accu-
racy over MFCC and LDA features.
Index Terms: speech recognition, feature extraction, linear dis-
criminant analysis, spectro-temporal features

1. Introduction
It is well known that acoustic cues about the identity of a phoneme
are spread in time around the actual phone. Yang et al. [1] showed
that for the best frame accuracy in phoneme recognition the in-
spection window should span about 200 ms. In features tradition-
ally used for speech recognition the time information is usually
taken into account only by augmenting the short-time spectral fea-
tures like mel-frequency cepstral coefficients (MFCC) with their
first and second order time derivatives. This way the features span
around 100 ms in time, but the way the time information is used is
very restricted.

There have been several attempts to derive more general fea-
tures for speech recognition which could better use the informa-
tion in time domain. One of the first approaches was to use linear
discriminant analysis (LDA) to combine features in several time
frames into one reasonable size feature vector [2, 3]. More re-
cently nonlinear methods like multi-layer perceptrons (MLP) have
been used for feature extraction with larger time spans [4]. Surpris-
ingly, it is not that easy to improve the MFCC features for speech
recognition. Even the MLP features need to be combined with
traditional spectral features for the best performance.

In this paper we experiment with different methods for esti-
mating linear filters for feature extraction. These methods use
as input a window of several short-time spectrum vectors, there-
fore allowing flexible modeling of spectro-temporal patterns. It
is shown that already a traditional LDA can improve the perfor-
mance over the MFCC features in a large vocabulary continuous
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ch recognition (LVCSR) task. We also present a new feature
ation method based on pairwise linear discriminants and ex-

ment with some of its variants. The features obtained with the
method are shown to outperform both the MFCC and LDA
ated features.

2. Linear feature estimation methods
goal of this research was to study linear feature extraction
ods that can utilize the spectro-temporal patterns of speech

al. These methods can be viewed as different ways to estimate
r filters that are applied to a supervector containing several
es of short-time spectral features such as filter-bank energies.
x(t) denote a column vector of short-time spectral features at
instance t. The methods presented here operate on a super-

or constructed as

X(t) =

2
66666666664

x(t − Δt)
...

x(t − 1)
x(t)

x(t + 1)
...

x(t + Δt)

3
77777777775

. (1)

way the features can have a time span of 2Δt + 1 frames.
The feature filter estimation methods give as a result a projec-
matrix A. The final observation features o(t) are then obtained
ly by multiplying the supervector with the projection matrix:

o(t) = AX(t). (2)

dimension of o(t) is usually much lower than that of X(t). In
work the dimension of X(t) was 315 and the dimension of the
features o(t) was 39.

Note that also the traditional MFCC features can be presented
is formalism. In that case, x(t) is a vector of logarithmic mel-
ed filter bank energies, and the projection matrix A contains
coefficients for the cosine transformation and computation of
ime derivatives.

Linear discriminant analysis

ar discriminant analysis is a well known method for estimat-
linear subspace with good discriminative properties. The idea
find a projection of the data where the variance between the

ses is large compared to the variance within the classes. Under
mptions of Gaussian class distribution and a common within-
s covariance matrix this can be stated formally as finding a
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projection matrix θ that maximizes the quotient

J(θ) =
det(θΣbθ

T )

det(θΣwθT )
, (3)

where Σb is the between-class covariance matrix and Σw is the
common within-class covariance matrix. Solution to this maxi-
mization is to take the first p eigenvectors of the matrix Σ−1

w Σb for
a p dimensional projection. For more information about LDA, see
[5].

Although the theory behind LDA is well established, there are
several choices in how to use it for feature extraction in speech
recognition. Being a supervised method, LDA needs class defini-
tions for the estimation process. One choice is to use phonemes as
classes [6], which is a popular choice also with MLPs (e.g. in [4]).
With LDA, using hidden Markov model (HMM) states as classes
have been shown to give improved recognition performance [3].
This is reasonable, as the HMM states can give more compact
classes with less variation compared to phonemes, especially when
using spectro-temporal input. However, with context-dependent
models the number of classes may become rather large. Beulen et
al. [7] showed that classes consistent with the HMM models are
the best choice despite this large number of classes.

Another issue with LDA is the type of the spectral information
used as the input for the method. The spectral information can be
presented with logarithmic filter bank energies [6], some trans-
formed features like PLP [8] or spectral energies augmented with
time derivatives [3]. LDA is invariant to linear transformations,
so there should be no need for spectral transformations. Beulen et
al. [7] noted that with Gaussian mixture densities the time deriva-
tives do not improve LDA over using only the spectral energies.
Supported by these findings, we use in our experiments logarith-
mic mel-spaced filter bank energies as our short-time spectral fea-
tures.

2.2. Pairwise linear discriminants (PLD)

The assumption about a common within-class covariance matrix in
LDA results in unoptimal features if the condition is not met. This
is the case with various speech classes which can have very differ-
ent covariance structures. LDA has been extended to heteroscedas-
tic linear discriminant analysis (HLDA) [9] which removes the
equal covariance constraint. However, this requires numerical op-
timization, which may become restrictive if the dimension of the
input vector increases too much. With spectro-temporal input this
can occur if a wide input window is required.

Our new method is based on using a two-class LDA to find
a one-dimensional projection for each pair of classes that maxi-
mize the Mahalanobis distance between those classes. The vari-
ance in the distance measure will be the average variance of the
two classes along the projection, which results reasonable solu-
tions even with unequal covariance matrices. Now instead of doing
a single LDA with all the classes we use LDA to compute linear
discriminants between the pairs of classes, and therefore avoid re-
stricting the class covariances to be the same.

When computing pairwise linear discriminants we can not
control the resulting number of feature dimensions directly. Fur-
thermore, we want to have features with decorrelated outputs,
whereas the projections to the pairwise discriminants may exhibit
considerable correlation. To solve these problems we compute
principal component analysis (PCA) of the training data projected
to the pairwise linear discriminants and take as features the linear

com
vect
(PL

ear d
of th
for P
C o

Let
its d
its r
featu

Due
relat
corr
disc

filte
eige
out v
duce
by c
tion
PLD
be p
pho
the u

2.3.

One
ber
form
can
filte
testi
The
tanc
ther
of 2
whic
mov
the
ing
good

disc
than
sect
corr
To a
ally,
mas
the
the c
corr
latio
intro

390

INTERSPEECH 2006 - ICSLP
binations of the discriminants as depicted by the p first eigen-
ors. We call the resulting features pairwise linear discriminant
D) features.
Formally, let W be a m×n matrix containing the pairwise lin-
iscriminants as its row vectors (n being equal to the dimension
e supervector X(t)). The projected covariance matrix CPLD

CA can then be obtained from the global covariance matrix
f supervectors X(t) as

CPLD = WCW
T
. (4)

Dp be a matrix containing the p first eigenvalues of CPLD as
iagonal and let Vp contain the corresponding eigenvectors as
ow vectors. The projection matrix APLD for p dimensional
re vectors is then obtained as

APLD = D
−1/2

p VpW. (5)

to this formulation, the resulting features are globally decor-
ed and have a unit variance. Using PCA to obtain the features
esponds to maximizing the energy of the training data in the
riminative space spanned by the pairwise linear discriminants.
All the computations required for estimating the PLD feature
rs are linear matrix operations, except for the computation of
nvectors with PCA. The computations can therefore be carried
ery efficiently. To further lower the computational load we re-
d the number of pairwise linear discriminants in the first place
omputing them only between the states of the same state posi-
in three-state HMMs used in our acoustic models. Estimating
feature filters with context-dependent states as classes would

rohibitive due to the large number of states, so we used mono-
ne HMM state classes instead. This, however, did not prevent
se of context-dependent acoustic models.

Variants of PLD

problem with pairwise linear discriminants is the large num-
of pairs and the high dimensionality of the initial feature trans-
ation. However, it also enables some manipulations which

be used to guide the PCA phase to find the best possible feature
rs. One method which was found useful during preliminary
ng was to remove those pairs that are easily discriminated.
discrimination effort was measured by the Mahalanobis dis-
e between the classes. In a model used to run the experiments
e were originally 693 pairs (corresponding to the state pairs
2 most frequent Finnish phonemes, including silence), from
h 200 pairs with the largest Mahalanobis distance were re-
ed. After estimating the final feature filters it was verified that
pairwise distances were now better preserved in the remain-
pairs, while the discrimination in the removed pairs remained
.

Kajarekar et al. [6] argued that it was more beneficial to run
riminant analysis in spectral and temporal domains separately
to use joint spectro-temporal LDA as presented in previous

ions. Inspired by their report we tried reducing the modeling of
elation among spectral dimensions of different time instances.
chieve this, we first decorrelated the spectral dimension glob-
and then when estimating the pairwise linear discriminants,

ked the class covariance matrices to only include correlation in
temporal domain. The masking allowed non-zero elements in
ovariance matrix only on positions corresponding to temporal

elation. The other positions, which hopefully had small corre-
ns anyway, were replaced with zeros, so in effect the masking
duced smoothing to the covariance matrices.
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Figure 1: Four feature filters visualized from different estimation
methods. The methods are (a) LDA, (b) PLD, (c) PLD with reduced
number of pairs and (d) PLD with masked covariance matrices.

Figure 1 shows some of the feature filters for four different
estimation methods: LDA, PLD, and the two PLD variants pre-
viously discussed. From each method four filters are presented:
the 1st, 6th, 14th and 27th feature filter out of 39. The 1st feature
filter corresponds to the one with the largest eigenvalue in PCA.
The time span of the filters is 128 ms. Generally the basic PLD
features and the PLD features with reduced number of pairs were
rather similar. Features estimated with masked covariance PLD
show smoother patterns than these two. LDA features are quite
different from the others, and they also show less noise-like pat-
terns than the basic PLD features.

3. Experimental results
3.1. Setup

We tested the presented feature estimation methods in a Finnish
large vocabulary continuous speech recognition task. The training
data contained both read and spontaneous sentences and word se-
quences from 207 speakers, with total of 21 hours of speech. The
recognition task was the same as the speaker independent task in
[10]. Also the speech recognition system was the same as in [10]
but with two exceptions: the features had been changed and the
n-gram language model had been updated to the one presented in
[11]. The acoustic models in the system were based on decision
tree tied triphone HMMs with Gaussian mixture densities. Before
Gaussian computation the features were transformed with maxi-
mum likelihood linear transformation, which has been shown to be
an important factor for linear feature extraction methods to work
well [9].

The spectrum information used for the feature estimation
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ods was computed from 16 ms windows, with consecutive
es 8 ms apart. We used 21 logarithmic mel-spaced filter-bank
gies as the base features, from which the MFCC and the LDA
d features were computed. In preliminary testing the tradi-
al LDA showed the best performance with a window width of
rames, resulting in 315 dimensional supervector for the input
ansformations, and this setting was used throughout all the
riments. The optimal window width might be larger if more
ing data was available, now the same 21 hours of data was
for feature estimation as for model training.

The segmentation of the training data used to define the classes
DA and PLD methods was done using Viterbi segmentation
monophone HMM models and MFCC features. The same
entation was used for all the methods, except for the triphone
LDA, which used the triphone state segmentation of the LDA

el (where classes had been monophone HMM states).
The scaling of language model probabilities with respect to
stic probabilities was optimized for each method using a held-

development set. Both the development and the actual evalua-
set contained only read sentences from disjoint sets of 20 and
peakers, respectively. The development set contained 1h and
valuation set 1.5h of speech.
The speech recognition performance was measured with let-
rror rate (LER), as it better indicates the recognition perfor-
ce of a highly inflectional language such as Finnish than the
monly used word error rate (WER). However, also WER is
rted for completeness.

Results

baseline model for the experiments used 12-dimensional
C and energy features augmented with first and second-order
derivatives, resulting in 39 dimensional feature vector. To
the results of various methods comparable, the dimension of

ther feature vectors was also 39.
Two different LDA models were experimented, the difference
g only in the class definition. The “LDA monophone” model
monophone HMM states as class labels, whereas “LDA tri-
e” used triphone HMM states. The acoustic models in both of

e and also in all other models experimented here were triphone
Ms, regardless of the LDA class definition. In addition to basic

models, a HLDA model with monophone HMM state classes
experimented, using a formulation given in [9].
The pairwise linear discriminant (“PLD”) model used the
e monophone HMM state class definition as the “LDA mono-
e” model. We also experimented two variants of PLD: “PLD
ced” had 200 pairs removed, and “PLD masked” was other-
the same as “PLD reduced” except that the class covariances
masked to reduce the modeling of correlation among spectral

ensions of different time instances. Both of these variants were
ribed in Section 2.3.
The results are summarized in Table 1. It can be seen that
best results, both for the development and the evaluation sets,

obtained using the “PLD reduced” model. The relative im-
ement compared to the baseline model in the evaluation set
about 18%.
Also the traditional LDA clearly improved the recognition re-
over the MFCC features in the evaluation set. The class def-

on (monophone or triphone HMM states) had only minor ef-
in the results. Resegmenting the triphone state classes with

“LDA triphone” model and retraining the model did not help
r. It was a bit surprising that the HLDA model improved
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the evaluation results compared to the LDA models only slightly.
However, in the development set HLDA gave the best results along
with the best PLD model, suggesting some variance in the results.

The basic PLD model performed similarly to the LDA models,
but the “PLD reduced” achieved a further 5% improvement com-
pared to the “LDA monophone” model. This improvement was
statistically significant according to the Wilcoxon signed rank test.

Masking the class covariances degraded the performance from
the “PLD reduced” model. This suggests that in an LVCSR task it
is useful to analyze spectral and temporal patterns jointly, whereas
in [6] a continuous digit recognition task was used to conclude
that a separate analysis in spectral and temporal domains was more
beneficial.

4. Conclusions
This paper investigated methods for estimating linear filters for
extracting features from a window of short-time spectral features
in speech recognition. These methods should in principle be able
to take into account the spectro-temporal patterns in speech and
therefore result in better features than e.g. the commonly used
MFCC features with augmented time derivatives. The results in
a large vocabulary continuous speech recognition task show that
already the well-known linear discriminant analysis is able to esti-
mate improved features compared to the MFCC.

A new method for estimating a discriminative linear subspace
was also presented. The basic form of pairwise linear discriminant
features showed similar performance as the LDA in the speech
recognition experiments. A modified form of the PLD features
(with easily discriminated pairs removed) resulted in a signifi-
cant improvement in recognition accuracy compared to the LDA
model. The improvements in the development set were quite dif-
ferent to the improvements observed in the evaluation set, which
indicates sensitivity to the speech data. However, the best PLD
model outperformed other methods consistently, only the HLDA
model gave the same performance in the development set.

The good results of LDA and PLD features show that a mod-
ern speech recognition system can benefit from linear feature ex-
traction methods. The PLD results also show that improvements
over traditionally used LDA are possible with a better estimation
method. A comparison to nonlinear feature extraction methods
like MLPs should be carried out. It should be noted, however, that
PLD features can be estimated very efficiently without computa-
tionally intensive optimization.

The full potential of PLD features was not necessarily seen
with the variants experimented in this paper. The role of class
definition with PLD features should be investigated more carefully.
As removing some of the pairwise linear discriminants before PCA
turned out to be useful, also other ideas like pair weighting or more

clev

This
“Ne
the G

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

392
er pair reduction methods could be considered in the future.
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Table 1: Speech recognition results for different feature estimation methods.

Model LER (devel) WER (devel) LER (eval) WER (eval)

MFCC+Δ+ΔΔ 4.80% 17.0% 5.22% 18.4%
LDA monophone 4.86% 17.1% 4.50% 17.2%
LDA triphone 4.94% 17.3% 4.56% 16.8%
HLDA 4.53% 16.4% 4.45% 17.0%
PLD 4.83% 16.8% 4.48% 16.7%
PLD reduced 4.54% 16.2% 4.26% 16.5%
PLD masked 4.74% 17.0% 4.55% 17.4%
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