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Abstract

In this paper, we extend a previously introduced method for the
generation of vocal tract length invariant (VTLI) features. The
novelty is a reduction of the number of obtained invariances to
the more desired ones, which results in a significant improvement
of recognition rates. In experiments on the TIMIT database, the
enhanced discrimination capabilities and robustness to mismatches
between training and test conditions are shown.

Index Terms: Automatic speech recognition (ASR), feature ex-
traction, vocal tract length normalization (VTLN), vocal tract
length invariance (VTLI), warping-invariant features, gammatone
analysis .

1. Introduction

The variation of the vocal tract length from speaker to speaker
leads to shifts in the frequency of the prominent spectral peaks
(formants) of speech, negatively affecting the performance of au-
tomatic speech recognition (ASR) systems. For this reason, vocal
tract length normalization (VTLN) [1, 2] has become an integral
part of many ASR engines. The background behind the normaliza-
tion is basically the fact that the short-time spectra of two speak-
ers A and B, when uttering the same vowel, are approximately re-
lated as XA(ω) = XB(αω), where α is related to the vocal tract
length ratio of both speakers. The frequency warping itself is typ-
ically carried out by warping the Mel filters when producing Mel-
frequency cepstral coefficients (MFCCs). Determining the optimal
α is, in general, a computationally expensive task, which is one of
the main drawbacks of the method.

Besides warping of short-time spectra, also the computation
of warping-invariant features has been proposed. The methods
include the scale transform [3] and a more general technique for
the generation of vocal tract length invariant (VTLI) features that
was introduced by Mertins and Rademacher in [4, 5]. In the latter
method, the wavelet transform was used as a preprocessor that pro-
duces a time-frequency analysis in which linear frequency warp-
ing results in a translation with respect to a log-frequency param-
eter. In a second step, VTLI features were generated by analyzing
the wavelet representations in a translation-invariant manner. The
methods studied in [4, 5] include the auto- and cross-correlations
of local wavelet spectra magnitudes as well as linear and nonlinear
transforms thereof.

The work of [4, 5] was extended in [6] by considering
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itory-system motivated primary frequency analyses. While a
t wavelet analysis with logarithmically spaced center frequen-
exactly carries out the conversion of linear frequency warping

inusoidal inputs into a translation in the log-frequency domain,
es not exactly match the frequency analysis that is carried out

he human auditory system. A more human-auditory-system
ivated frequency analysis is obtained with so-called gamma-
filterbanks, which have been found from physiological animal

eriments as well as from mathematical analyses of cochlear
hanics. The frequency resolution of the human auditory sys-
is best represented with the so-called equivalent rectangular

dwidth (ERB) scale, which has been found from masking ex-
ments.

The method in [4, 5, 6] not only yields invariance with respect
requency translation, but also with respect to other operations.
s undesired side effect may reduce the discrimination capabil-

of the features. In this paper, we show a method of how to
ce the number of invariances while retaining the desired one

ranslation invariance. This allows us to further increase the
ormance of VTLI features, especially when the distribution of
al tract lengths in the training set does not match the one in the
set.

The paper is organized as follows. In the next section, we
rtly introduce the wavelet transform as it is used in this paper
then describe the gammatone analysis. Section 3 then presents
generation of the proposed, warping-independent VTLI fea-
s and the reduction of associated invariances. In Section 4 we
ribe the experimental setup and present results on phoneme
gnition experiments. Section 5 gives some conclusions.

2. Primary time-frequency analysis

is section, we discuss two signal representations that naturally
ble the extraction of features in such a way that linear frequency
ping is transformed into a simple translation with respect to
ecific frequency scale. The first one is the integral wavelet
sform, implemented in its discretized version. The second one
e auditory motivated gammatone analysis.

The wavelet transform

discrete-time wavelet transform of a signal x(n) can be com-
d as

wx(n,k) = 2−k/(2M)
X

m
x(m)ψ∗

“ m−nN
2k/M

”
, (1)
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where M is the number of voices (subbands) per octave, and
N is the subsampling factor used to reduce the sampling rate
in the wavelet subbands. Assuming K octaves, the scaling pa-
rameter of the wavelet transform takes on values ak = 2k/M ,
k = 0,1, . . . ,MK −1. The continuous-time wavelet ψ(t), whose
samples occur in the sum in (1), is the so-called mother wavelet.

The wavelet analysis will have better time resolution at higher
frequencies than needed for producing feature vectors every 5 to
15 ms. Direct downsampling of features will therefore introduce
aliasing artifacts. Since we are mainly interested in the signal-
energy distribution over time and frequency, we may take the mag-
nitude of wx(n,k) and filter it with a lowpass filter in time direction
before final downsampling. The final primary features will then be
of the form

yx(n,k) =
X

�

h(�) |wx(nL− �,k)| (2)

where h(�) is the impulse response of the lowpass filter, L is the
downsampling factor introduced to achieve the final frame rate
fs/(N · L), and fs is the sampling frequency. To avoid that the
filtered values yx(n,k) can become negative, we assume a strictly
positive sequence h(n).

2.2. The gammatone analysis

The wavelet transform described above is a true constant-Q analy-
sis with the same relative bandwidth in all frequency bands. How-
ever, the assumption of constant relative bandwidths as well as the
strict logarithmical frequency-spacing as mentioned before, does
not correspond with the filtering process in the human auditory
system [7]. The impulse responses of the filters in the auditory
system can be approximated by the following sampled impulse re-
sponse of a complex analog gammatone filter [8]

pk(n) = nγ−1 ·λ n exp( jβkn) , n ≥ 0 (3)

where λ denotes the bandwidth or damping parameter, βk deter-
mines the center frequency of the kth filter, and γ denotes the filter
order. The center frequency fk of such a filter is parameterized by
the angle βk which takes the value βk = 2π fk/ fs.

Using the following analytical expression for the ERB of au-
ditory filters as a function of the frequency f as given in [9],

ERBauditory( f ) = 24.7+
f

9.265
, (4)

Patterson et al. showed in [7] that the damping parameter λ can be
well approximated by

λ = exp

„
−2πb

fs

«
, b = ERB · (γ −1)!2

π (2γ −2)! ·2−(2γ−2)
(5)

leading to an auditory motivated, constant bandwidth on the ERB
scale.

Given a representation

gx(n,k) =
X

m
x(n−m)pk(m), (6)

the final primary representation yx(n,k) is then computed as in (2)
with wx(n,k) being replaced by gx(n,k).
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3. Warping-invariant features

ed on a time-frequency analysis yx(n,k) of a signal x(n) in
ch linear frequency warping results in a translation of yx(n,k)

respect to k, it is possible to obtain VTLI features by analyz-
the representations in a translation-invariant manner. There are
erent methods to achieve translation invariance.

First, let us consider the Fourier transforms of yx(n,k) and
,k− k0) with respect to the parameter k. We obtain

x(n,e jν ) =
X

k

yx(n,k)e− jνk

,k0
(n,e jν ) =

X
k

yx(n,k− k0)e− jνk = e− jνk0Yx(n,e jν )

(7)
s, the magnitude of Yx,k0

(n,e jν ) is independent of k0, resulting
VTLI feature set.

Other possibilities to achieve translation invariance include,
are not limited to, correlation sequences with respect to the log-
uency index k, between transform values or nonlinear func-
s thereof at two time instances n and n−d. A straight forward
which is still related to the Fourier transform mentioned above,
iven by

ryy(n,d,m) =
X

k

yx(n,k)yx(n−d,k +m) (8)

arly, also the logarithm of the correlation sequence is transla-
invariant. Using logryy(n,d,m) as features then simulates the
pressive nonlinearity of the hearing system, similar to the log

ration in the generation of classical MFCCs.

The correlation of logarithmized spectral values yields another
sibility:

cyy(n,d,m) =
X

k

log(yx(n,k)) · log(yx(n−d,k +m)). (9)

eature vector for time index n can then contain any collection
he above mentioned features computed for the same index n.
d = 0 these features will give information on the signal spec-

in time frame n. For d �= 0 they will give information on the
elopment of short-time spectra over time.

Any linear or nonlinear combination and/or transform or fil-
g of ryy(n,d,m) and cyy(n,d,m), including taking derivatives

, delta and delta-delta features) will also yield warping invari-
features.

One drawback of techniques for invariant-feature generation
osed in [3, 4, 5, 6] is the fact that the generated features are
riant with respect to more operations than desired. For ex-
le, the correlation sequences ryy(n,d,m) and r

eyey(n,d,m) of
,k),0 ≤ k ≤ MK −1 and eyx(n,k) = yx(n,MK −1− k) are the
e. More general, arbitrary zeros of the z-polynomial

Yx(n,z) =
X

k

yx(n,k)z−k

be inverted without affecting the magnitude of Yx(n,e jν ), and
, without affecting the corresponding correlation sequences.

s unwanted side effect has the potential to reduce the discrimi-
on capabilities of the generated features for the task of speech
gnition.



In the following, we present a new, extended approach for the
generation of invariant features that reduces the number of related
invariances but keeps the desired invariance with respect to fre-
quency warping. In the extended method, we first convert the real-
valued primary feature set yx(n,k) into a complex-valued one, de-
noted by ux(n,k), in which the values yx(n,k) are encoded in both
the magnitude and the phase. The proposed generation of ux(n,k)
is as follows:

ux(n,k) = yx(n,k) · exp

0
@ j

0
@ yx(n,k)qP

k |yx(n,k)|2

1
A

κ

· π
4

1
A , (10)

where κ denotes a scaling exponent. The normalization of the
phase term ensures that the angle does not exceed π/4. All re-
maining processing steps are the same as before, using ux(n,k)
instead of yx(n,k). The correlation sequence

ruu(n,d,m) =
X

k

u∗x(n,k)ux(n−d,k +m) (11)

is then generally complex, where the superscript ∗ denotes com-
plex conjugation. The phase of ruu(n,d,m) provides additional
information that reduces the class of invariances, and at the same
time, keeps the desired invariance to vocal tract length variations.

4. Experimental setup and results

In our experiments, different setups using the linear-phase wavelet
transform described in Section 2.1 and the nonlinear-phase,
auditory-system motivated gammatone filterbank according to
Section 2.2 were used. For the wavelet transform, we used the
linear-phase Morlet wavelet given by

ψ(n) = e jω0n e
− n2

2σ2
n (12)

with ω0 = 0.9π and σ2
n = 100. The initial downsampling fac-

tor N was chosen as N = 1. The transform was carried out for
M = 12 voices (subbands) per octave and K = 7 octaves yielding
84 wavelet coefficients. For the gammatone filterbank, an ERB
based approach with 90 ERB spaced center frequencies was exam-
ined. Center frequencies were considered in the range of 40-6700
Hz, each with a bandwidth of one ERB. For both the wavelet and
the gammatone features, the lowpass filter h(n) was a rectangu-
lar window of 200 coefficients, and the frame rate was set to one
frame every 10 ms.

A number of phoneme recognition tests were performed with
these setups using the TIMIT database (including the SA files)
with a sampling rate of 16kHz. The training and test sets were
both split into male and female subsets in order to allow for train-
ing and testing under different conditions. In the following, M+F,
M, and F denote training/test on male+female, male, and female
data, respectively. Following the procedure in [10], 48 phonetic
models were trained, and the recognition results were folded to
yield 39 final phoneme classes that had to be distinguished.

Phoneme recognition tests were performed by a HMM-based
phoneme recognizer using monophone models, bigram statistics,
three states per phoneme, 8 Gaussian mixtures per state, and diago-
nal covariance matrices. The recognizer was based on the Hidden-
Markov-Toolkit (HTK) [11].
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Besides well known MFCCs, vocal tract length normalized
CCs (VTLN-MFCC) were investigated. The acoustic likeli-
d for each utterance warped by different warping factors were
ulated by a Viterbi decoder. From this, the optimal warping
ors were derived for each speaker by an exhaustive search and
models were re-trained using features warped by those factors.
s procedure was applied twice to the training features and the
esponding HMMs. For the features of the test set, optimal
ping factors were obtained for each utterance in the same way.
r warping the test features using the optimal factors, the final
gnition was performed.

Warping invariant features based on the real-valued primary
ures yx(n,k) and the correlation terms (8) and (9) were gen-
ed for both the wavelet and the gammatone analysis. These
ures will be referred to as “VTLI-WT-F” and “VTLI-GT-F”,
ectively, in the following. The feature sets consist of the fol-
ing selection:

• the first 20 coefficients of the discrete cosine transform
(DCT) of log(ryy(n,0,m)) with respect to parameter m

• the first 20 coefficients of the DCT of cyy(n,4,m) with re-
spect to parameter m

• log(ryy(n,4,m)) for m = −2,−1, . . . ,2

The warping-invariant features were also amended with clas-
l MFCC features. For this, the 12 MFCCs and the single en-
feature of the standard HTK setup were used (denoted by 13

CC in the following), produced with the same frame rate and a
e length of 20 ms. Moreover, the first 15 DCT coefficients of

logarithmized features log(yx(n,k)) were used for feature set
ndment as well (DCT with respect to frequency parameter k)
denoted as “WT” or “GT” respectively. After the amendment
ese feature sets by their delta and delta-delta features, reduced

ure sets of 47 features were generated by linear discriminant
lyses (LDA) [12]. The LDAs were based on the 48 phonetic
ses mentioned above.

Complex-valued correlation features were calculated accord-
to (10) and (11), with yx(n,k) based on the ERB-spaced gam-
one filterbank and the parameter κ set to κ =0.2. Here, the
owing VTLI feature set was generated:

• the first 20 coefficients of the DCT of log(|ruu(n,0,m)|)
with respect to parameter m

• the first 20 coefficients of the DCT of arg(ruu(n,0,m)) with
respect to parameter m

• the first 20 coefficients of the DCT of cyy(n,4,m) with re-
spect to parameter m

• log(ryy(n,4,m)) for m = −2,−1, . . . ,2

se warping-invariant features were then amended with MFCCs
the features log(yx(n,k)) as well as all delta and delta-delta

ures and then reduced to a subset of 47 features in a similar
ner as mentioned before. The corresponding feature set will

abeled with the subscript “u”.



Altogether, the following feature sets were considered for ex-
periments on the TIMIT corpus:

• 3×13 MFCCs: 13 MFCCs and the corresponding delta and
delta-delta features.

• 3×13 VTLN-MFCCs: 13 VTLN-MFCCs and the corre-
sponding delta and delta-delta features.

• VTLI-WT-F+MFCC+WT.

• VTLI-GT-F+MFCC+GT.

• VTLI-GTu-F+MFCC+ GTu.

Table 1 contains the results for HMM-based phoneme recogni-
tion using the above mentioned feature sets. The standard MFCCs
yield good results in the M+F setting, but their performance signif-
icantly deteriorates when training and test conditions differ. The
best performance is achieved with MFCCs and VTLN, as one
might expect. An almost equally good performance, however, is
achieved with the proposed complex-correlation based feature set
VTLI-GTu-F+MFCC+GTu. In the M+F setting, these features are
as good as the MFCCs, and in the mismatch conditions, they al-
most reach the performance of VTLN, without the additional need
of determining the warping factor explicitly.

5. Conclusions

We have proposed a technique for the extraction of vocal tract
length invariant features with an auditory-filterbank based prepro-
cessing. The number of unwanted invariances that occur as a side
effect of an invariance transform are minimized by encoding the
information in both the magnitude and phase of temporary feature
vectors prior to the invariance transform. This leads to an enhance-
ment of recognition rates and to more robustness. The results have
shown that the new features are complementary to the well-known
MFCCs and that they can be used to construct combined feature
sets that are robust to speaker variations, especially when the train-
ing conditions do not match the test conditions. The more complex
VTLN technique, however, still gives slightly better results. Fu-
ture work will be directed toward fine tuning the processing steps
and the feature selection, to close the gap of recognition accuracy
between VTLI features and the VTLN method.
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