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Abstract

In this paper we address the problem of robust speech recognition.
We propose a new method based on the individual variance adap-
tation of frequency filtered parameters to reduce the deleterious
effects of additive narrow-band noise. The method can be inter-
preted as a spectral weighting that assigns increased importance
to the most reliable spectral components, typically the spectral
peaks. The experiments confirm that the suggested method results
in significantly improved recognition rates for additive narrow-
band noise.
Index Terms: additive noise ASR, frequency filtered parameters,
spectral subtraction, model variance adaptation, spectral weight-
ing.

1. Introduction
State-of-the-art Automatic Speech Recognition (ASR) systems
can achieve high recognition rates in distortion-free environments.
However, as is well known, in real environments various distor-
tions lead to a significant degradation in recognition performance.
To counter this degradation, much effort has been spent to improve
the robustness of ASR systems, particularly against the effect of
convolutive and additive distortions. A classic review can be found
in [1].

In this paper we focus on the reduction of the effect of additive
distortion. Perhaps the best-known method to reduce the effects of
additive distortions is spectral subtraction [2]. It consists of sub-
tracting an estimate of the noise spectrum from the noisy speech
spectrum, achieving good results for stationary and wide-band ad-
ditive noises.

Other techniques try to reduce the noise sensitivity of the sta-
tistics of the parameters. Segmental feature vector normalization
[3], also called Mean Variance Normalization (MVN), normalizes
the mean and variance of the parameters to zero and one, respec-
tively. Histogram normalization [4] or histogram equalization [5]
aim at normalizing all moments of the distribution.

Instead of pursuing a robust parameterization, other proposals
aim at adapting the acoustic unit models to the acoustic environ-
ment. One of the most popular methods is PMC (Parallel Model
Combination) [6], which adapts the mean and variance of the mod-
els to compensate for the effect of additive distortion. In contrast
to the techniques discussed in this paper, PMC was conceived to
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Figure 1: Frequency Filtered Parameterization Scheme.

k either sporadically when significant changes in the noise sta-
cs are detected or simply off-line.
In this paper we use a parameterization called Frequency Fil-
d (FF) [7], which achieves results similar to the well-known
Frequency Cepstral Coefficients (MFCCs) but operates in the

spectrum domain. Figure 1 summarizes by means of a block
ram the steps involved in FF computation. As can be seen in
figure, the substitution of the DCT (Discrete Cosine Trans-
) by a high-pass filter is the main difference with respect to

MFCC parameterization. The high-pass filter used in our ex-
ments involves only two log filter bank energies: z − z−1 [7].
The main motivation for using the FF parameters is that they
a simple relation to the log spectrum, facilitating simple ana-

al approximations for their mean and variance that incorporate
effect of additive noise. As we show in Section 2, the use of
tral subtraction can compensate for the bias in the FF para-

ers resulting from additive noise but it can not compensate for
bias in the variance. Therefore, we propose a new method to
orm on-line variance adaptation of the FF parameters.
We show that the new variance adaptation approach can
nterpreted as a spectral weighting that explains the strong
gnition-rate improvements observed for narrow-band addi-
noise. The weighting consists of two terms. The first de-
hasizes the least reliable components of the feature vector. The
nd penalizes those models that, due to the variance adaptation
ening), become competitive far from their normal range of ac-
y (around their means). The method has similarities to meth-
based on missing features [8] where the input time frequency
ures are usually classified as reliable or unreliable features and
gnition is based on the reliable ones. However, in our method

need for a classifier is avoided by the usage of spectral weight-

To summarize, we propose a method for mean and variance
tation for the FF parameterization. An approximate analytical

ression is found for the mean and variance of the noisy FF pa-
eters. The mean is adapted by spectral subtraction and a novel
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procedure is proposed to adapt the variance. In contrast to MVN,
which just normalizes mean and variance of the feature vectors,
the proposed approach adapts the models depending on the noise
spectrum. Compared to PMC, the proposed variance adaptation is
much more dynamic. As is show in section 4, the new variance
adaptation significantly improves recognition rates over spectral
subtraction in the presence of narrow-band additive noise.

This paper is organized as follows. Section 2 explains the
proposed method to compensate for the mean and variance of the
noisy FF parameters. Section 3 gives an interpretation of the pro-
posed method as a spectral weighting. Experiments and results are
presented in section 4. Finally, conclusions are outlined in Section
5.

2. The proposed method: spectral
subtraction and variance adaptation of the

frequency filtered (FF) parameters
One of the long-standing problems in the field of ASR is the mis-
match between training and testing conditions. We use spectral
subtraction followed by a simple and novel variance compensation
of the FF parameters for adaptive compensation of the model pa-
rameters. In this section we develop the required formulation to
obtain the mean and variance of the noisy FF parameters for each
frequency band, in order to proceed with the corresponding adap-
tation.

We assume that the speech signal is contaminated with addi-
tive and uncorrelated noise. This implies that the noise and speech
components are also additive in the magnitude spectrum domain.
Since the filter bank energies are just a linear combination of the
frequency magnitude spectrum components, the additive property
is retained also in that domain. Therefore, we have that

FBEkn = FBEk + nk, (1)

where k denotes the kth filter bank component, FBEkn the Filter
Bank Energy of the noisy speech; FBEk the Filter Bank Energy
of the clean speech and nk the additive noise. Let us furthermore
assume that each noise component, nk, is a random variable with a
Gaussian distribution with mean μnk

and variance σ2
nk

. We make
the reasonable approximation that the noisy filter bank energies are
uncorrelated with each other.

Spectral subtraction removes the noise spectrum estimate from
the noisy speech spectrum. As a result, the noisy speech filter bank
energies after applying spectral subtraction are given by

FBEss

kn = FBEkn − μnk
= FBEk + nk − μnk

. (2)

For the sake of clarity, we drop the super-index ss in the remainder
of this paper. We refer to the filter bank energies after the spectral
subtraction as FBEkn.

Next, the log filter bank energies are computed:

LFBkn = log(FBEkn) = log(FBEk + nk − μnk
). (3)

The first order Taylor series expansion of the log operator around
a certain point a is used to obtain a linear approximation of the
log filter bank energies. Therefore, the noisy and clean terms are
written as

LFBkn ≈ log(a) +
FBEk

a
− 1 +

nk − μnk

a
(4)

LFBk ≈ log(a) +
FBEk

a
− 1. (5)
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bining equations (4) and (5) we then obtain

LFBkn ≈ LFBk +
nk − μnk

a
. (6)

make this approximation accurate, the point a should be close
BEk + nk − μnk

and FBEk. The former value is just the
tral subtraction-based estimation of the latter, which is un-

wn. Therefore, we select a = FBEk + nk − μnk
. It is worth

ng that (see eq. (6)) the amount of noise at the k’th log filter
k energy is inversely proportional to a, i.e., to FBEk. As a re-
, the high-energy bands (spectral peaks) are less sensitive than
low-energy bands (spectral valleys). This fact is due to the log
rator: for high energies, where the derivative of the log is quite
ll, the ear is less sensitive to changes in the power spectrum
for low energies, where the derivative of the log is higher.

Once we have written FBEkn as a function of FBEk, it is
to write the noisy FF parameters as a function of the clean

parameters to compute the new mean and variance. The FF
ficient for the kth log filter bank energy is then

FFkn = LFB(k+1)n − LFB(k−1)n ≈

≈ LFBk+1 +
nk+1 − μnk+1

a
−

− LFBk−1 −
nk−1 − μnk−1

b
, (7)

h a = FBEk+1+nk+1−μnk+1
and b = FBEk−1+nk−1−

−1
. Given that FFk = LFB(k+1)n − LFB(k−1)n, equation

an be rewritten as

FFkn ≈ FFk +
nk+1 − μnk+1

a
−

nk−1 − μnk−1

b
. (8)

suming that the clean FF parameters are uncorrelated to the
esponding noise component and the noise components are un-
elated among each other, we can compute the mean and the
ance of noisy FF parameters:

μFFkn
= E{FFkn} = μFFk

(9)

σ2
FFkn

= E{(FFkn − μFFkn
)2)} =

= σ2
FFk

+
σ2

nk+1

a2
+

σ2
nk−1

b2
, (10)

ere μFFkn
and σ2

FFkn
are the mean and variance of the noisy

arameters; μFFk
and σ2

FFn
are the mean and the variance of

clean FF parameters; and μnk−1
, σ2

nk−1
and μnk+1

, σ2
nk−1

are
mean and the variance of the (k − 1)’th and (k + 1)’th noise
ponents, respectively.
It is worth noting that spectral subtraction is an effective
hod with respect to the mean, since μFFkn

= μFFk
. How-

, the variance of the noisy FF parameters is no longer equal to
clean variance and, as a result, variance adaptation is needed
uitably represent the noisy FF features. Since μFFk

and σ2
FFk

be estimated easily from the trained Hidden Markov Models
Ms), we only have to estimate σ2

nk
for every k.

Once we know how to compensate the static FF parameters it
raightforward to compensate the delta parameters.

Interpretation of variance adaptation as a
spectral weighting method

peech recognizer estimates the acoustic unit that has been ut-
d by computing the maximum likelihood along all the possible



acoustic models (see [9] for more details):

λ = arg
i
max

i

log(ai

xox1
) +

T

t=1

− log (2π)N |Σi
xt
| −

−
1

2
(FFt − μ

i

xt
)T (Σi

xt
)−1(FFt − μ

i

xt
) +

+ log(ai

xtxt+1
) + log(P (λi)) , (11)

where λi refers to the ith acoustic model; ai

xtxt+1
is the transition

probability between the states xt and xt+1 for the model i; N is
the number of components of the feature vector; Σi

xt
and μ

i

xt
are

the covariance matrix and the mean vector for the model i and
state xt; FFt is the observation vector (Frecuency Filtered) at
the instant t; and finally, P (λi) is the probability of the model λi.
Here we consider only single-Gaussian models but the expressions
are easily generalized to the mixture-Gaussian models case.

If we focus on the terms in equation (11) that have to do with
the emission probability in each state, suppressing the time and
model indexes and considering diagonal covariance matrices we
obtain:

S = −
1

2

N

k=1

log(2πσ2
FFk

) +

N

k=1

(FFk − μFFk
)2

σ2
FFk

.(12)

Adapting σ2
FFk

in this last equation as previously determined
(eq. (10)) and rewriting the result in a more convenient way

S = −
1

2

N

k=1

log 2π
σ2

FFk
+

σ
2
nk+1

a2 +
σ
2
nk−1

b2

σ2
FFk

σ2
FFk

+

+

N

k=1

σ2
FFk

σ2
FFk

+
σ2

nk+1

a2 +
σ2

nk−1

b2

(FFkn − μFFk
)2

σ2
FFk

.(13)

Next we introduce the notation

wk =
σ2

FFk

σ2
FFk

+
σ2

nk+1

a2 +
σ2

nk−1

b2

. (14)

and rewrite equation (13) as

S = −
1

2

N

k=1

log 2πσ2
FFk

+

+

N

k=1

wk

(FFkn − μFFk
)2

σ2
FFk

−
N

k=1

log wk . (15)

Comparing this last equation with the original for clean fea-
tures (eq. (12)), two differences become evident:

• The term
N

k=1

(FFk − μFFk
)2

σ2
FFk

(16)

for clean features turns into

N

k=1

wk

(FFkn − μFFk
)2

σ2
FFk

(17)
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for noise features. This term is a normalized Euclidean dis-
tance that indicates how far or close is the observation from
the model represented by (μFFk

, σ2
FFk

).

We can see the weights wk given by eq. (14) as a measure
of the noise level in our input features. Therefore, when
the noisy term in our variance, σ2

nk+1
/a2 + σ2

nk−1
/b2, is

relatively small, we find weights close to one. In contrast,
the weights are close to zero when the noisy term is rel-
atively large. Normally, weights close to one come from
high-energy regions in the log-filter bank energy domain
and, therefore, eq. (17) is dominated by the spectral peaks
instead of by the valleys. It is also important to note that the
weights depend on the variance of the model in such a way
that models with larger variances are less sensitive to noise
distortions.

• The second difference consists in the addition of the term

−

N

k=1

log wk. (18)

The problem when we weight the Euclidean distance as we
do in eq. (17) is that it is close to zero if most of the weights
are low. A distance close to zero indicates a perfect match-
ing between the current model and the observation. The
term defined by eq. (18) adds a penalty for low weights. It
is worth noting that this term vanishes when all weights are
equal to one, that is, when there is no noise.

4. Experiments and Results
Database

database employed in our experiments was the well-known
ource Management RM1 Database [10], which has a vocabu-
of 991 words. The training corpus consisted of 3990 sentences
the test set contains 1200 sentences, which corresponds to a
pilation of the first four official test sets. We used a downsam-
version (at 8 KHz) of the database (originally recorded at 16
in clean conditions).

Recognition System

back-end was based on HMMs. The HTK toolkit [9] was
to build the system. Context-dependent acoustic models in

form of cross-word triphones were used. A three-state, three-
ture per state model was used to represent each triphone. The
els were estimated using clean speech. The standard word-
grammar was used as the language model. Twelve frequency

red coefficients plus the log-energy and their delta parameters
e used as front-end in the recognizer.

Noise types

mplement the proposed method, an estimate of the mean and
variance of the noise components in the filter bank domain is
ed. To render the results independent from the noise estima-
method, we performed experiments with oracle knowledge of
noise statistics. We calculated the mean and variance of the
e component at the filter bank domain using the noise signal
was added to each sentence. In this oracle estimation there is

mplicit assumption of stationarity. For this reason, the exper-
nts were limited to noises that could be considered stationary.
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Figure 2: Word Error Rate (WER) for pink and car noises and four
SNRs. The white bar is displayed for reference and corresponds
to the recognizer without any robust method (No SS); the gray bar
shows the results achieved by spectral subtraction (SS); and the
black bar represent the results achieved by the proposed method
(spectral subtraction plus variance adaptation (SS + Var. Adapt.)).

We used white, pink and car noises from the NOISEX-92 [11]
database.

4.4. Results

We compared our method (spectral subtraction plus variance adap-
tation) with spectral subtraction (alone), as described in [12],
and with the recognizer without applying any noise compensation
method. Figure 2 shows the results for pink and car noises and
four Signal to Noise Ratios (SNR).

As can be observed from the Figure 2, variance adaptation
is effective in the presence of narrow-band additive noises, such
as pink and car noise, at medium and low SNR. For high SNRs,
variance adaptation does not result in additional losses.

The good results for car noise deserve special analysis. Car
noise is a low-pass noise with a small frequency support. This fre-
quency structure makes that just a few frequency coefficients are
affected. The weights computed by eq. (14) are low for these coef-
ficients and close to one for the uncontaminated coefficients. Thus,
the method proposed in this paper uses only the reliable compo-
nents of the feature vector.

The results for white noise (not included in the Figure 2 to
avoid distracting the reader from the analysis for narrow-bands
noises) tell us that the variance adaptation contribution is not sig-
nificant.

5. Conclusions
In this paper we addressed the problem of speech recognition in
an environment with additive noise. A new variance adaptation
method was presented as a way of compensating for the mismatch
between training and testing conditions.

The main advantage of our proposal comes from the use of
a particular parameterization, the FF parameters, which is closely
related to the frequency spectrum. This allows us to avoid the
complexity associated with this kind of compensation if other pa-
rameterizations, such as cepstra, are used.

Additionally, our method facilitates a novel interpretation of
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variance adaptation process as a spectral weighting. From this
t of view, the variance adaptation contributes through two sep-

e terms. The first one weights the components of the feature
ors so as to perform recognition only with the most reliable
ponents. The second term penalizes those models that, due to
variance adaptation (widening), become competitive far from
r means.
We presented experimental results that show the effectiveness
ur method for narrow-band noises.
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