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Abstract
We propose a novel method for blind speech separation using con-
tinuous time-frequency masking. The method is equipped with an
adaptive choice of a threshold parameter that is based on utilization
of ICA methods. We present a direct application that consists in the
speech segregation for automatic transcription of spoken broad-
casts disturbed by background music. Experimental results show
improved performance in comparison with traditionally used bi-
nary masking methods.
Index Terms: Independent Component Analysis, time-frequency
masking, speech recognition, automatic transcription.

1. Introduction
Blind Source Separation (BSS), which consists in recovering orig-
inal signals from their mixtures when the mixing process is un-
known, has been widely studied problem in last two decades. Inde-
pendent Component Analysis (ICA) is one of most popular meth-
ods for BSS based on the assumption of independence of the un-
known original signals [1]. The underlying task is an instantaneous
linear mixing model

x(t) = As(t) t = 1, . . . , N, (1)

where x(t) = [x1(t), . . . , xm(t)]T and s(t) =
[s1(t), . . . , sn(t)]T denote the realizations of the mixed sig-
nals and of the original signals, respectively, A is an m × n
full-rank mixing matrix, and N is the number of samples.

Numerous methods have been proposed in the literature that
are able to estimate the original signals s when their number does
not exceed the number of the mixtures x, i.e. m ≥ n [2, 3]. A
typical feature of the ICA methods is that the original signals can
be retrieved up to their original order, scales, and signs [4] unless
any prior information is available.

The separation of the underdetermined model, i.e. when m <
n, is often based on the assumption of sparseness of the original
signals either in the time, frequency, or time-frequency domain [5].
Many methods utilize the property together with the assumption
of W-disjoint orthogonality [6, 7] of the original sources, and the
separation proceeds by 1) identification of system parameters via
ICA and 2) sources segregation by means of binary time-frequency
masking [8, 9].

This paper focuses on the masking stage only while the mix-
ing system and its parameters are known. Specifically, our direct

0This work was partly supported by the Czech Science Foundation
(GA ČR) through the project 102/05/0278.
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ication consists in separation of a speech signal from its stereo
ture with background noise (music). The model has a form

x1(t) = s(t) + y1(t)

x2(t) = s(t) + y2(t) t = 1, . . . , N, (2)

re s denotes the speech signal, and y1 and y2 denotes left and
t interfering noise, respectively. We further assume that s(t)
dependent of y1(t) and y2(t) for all t = 1, . . . , N , and all
als have zero mean, i.e., E[s(t)] = E[y1(t)] = E[y2(t)] = 0.
, E stands for the expectation operator.

We will further process signals

(t) =
1

2
(x1(t) + x2(t)) = s(t) +

1

2
y1(t) +

1

2
y2(t) (3)

v(t) = x1(t) − x2(t) = y1(t) − y2(t) (4)

are clearly defined thanks to known mixing parameters. How-
, if they were not known, it would be highly expectable that
t ICA methods applied on signals x1 and x2 result in scaled,
dered and resigned copies of u and v. This is justified by the
that u and v are not correlated when E[y1(t)]

2 = E[y2(t)]
2.

t, v does not contain the signal s, thus, u and v “usually” form
ost independent pair of signals [13]. We claim this since it is

starting point for further generalization of our work. In addi-
, we utilize residual interference estimator, that is a by-product
e hypothetically applied ICA algorithm with known perfor-
ce [11, 12], for masking threshold parameter choice.

It was already suggested in [13, 14] that a continuous masking
be used instead of the binary one [7], especially, when the
sity or the W-disjoint orthogonality of the signals are violated.
n if they are not so, the binary masking segregates a source
eroing rejected frequencies of the processed signal (its finite-

ple short-time Fourier Transformation (STFT)). This results in
anted distortion of the segregated signal.

The masking is often driven by a nuisance threshold parameter
se optimum value is unknown. By means of suitable criteria,
will show that a bad choice of the parameter may seriously
ade the quality of the segregated signal. Based on this, we
ose a novel continuous masking method being less sensitive
e parameter choice, and further we introduce a heuristically

ved trick using ICA for an adaptive choice of the parameter.

The paper is organized as follows. Next section introduces per-
ance measures that are very important for objective evaluation
erformances of the masking methods and for their compar-
s. In Section 3, our continuous mask is proposed, and the adap-
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tive choice of the threshold parameter is derived. In Section 4, bet-
ter performance of our masking method is validated by computer
simulations, and results of application in automatic transcription of
spoken broadcasts disturbed by background music are presented.

2. Performance Measurement
2.1. Short-time Fourier transformation

We define the L-point short-time Fourier Transformation of a sig-
nal x(t), t = 1, . . . , N , by

STFT[x(t)](ωk, �) = x(ωk, �) =

=

�M+LX
i=�M+1

x(i)w(i)e−
2πj
L

(i−�M−1)(ωk−1), (5)

where L is length of the time-window, M is length of the non-
overlap segment, � = 0, . . . , (p − 1)r, ωk = 1, . . . , L, and r =
L/M and p = N/L (we assume that r and p are integers). An
inverse transformation to the STFT will be denoted by ISTFT. We
have used L = 1024, M = 128, and the rectangular window
function w ≡ 1 in (5) since the windowing effect was shown to be
negligible [6].

2.2. Performance measures

Let M(ωk, �) be a positive real function representing a mask, and
let s(ωk, �), y1(ωk, �), y2(ωk, �), u(ωk, �), and v(ωk, �) be, re-
spectively, the short-time Fourier transformations of the signals s,
y1, y2, u, and v. Masked versions of s, y1, and y2 are defined,
respectively, by

esM(t) = ISTFT [M(ωk, �)s(ωk, �)] (t) (6)ey1
M(t) = ISTFT [M(ωk, �)y1(ωk, �)] (t) (7)ey2
M(t) = ISTFT [M(ωk, �)y2(ωk, �)] (t) (8)

Finally, bsM denotes the resulting estimated signal s arisen from
masking of the known signal u, i.e.,

bsM(t) = ISTFT [M(ωk, �)u(ωk, �)] (t) (9)

In order to measure the quality of the signal bsM we use
interference-plus-distortion-to-signal ratio (IDSR)

IDSR
M =

minα E[s(t) − αbsM(t)]2

E[s(t)]2
. (10)

We present also partial criteria: distortion-to-signal ratio (DSR)
and interference-to-signal ratio (ISR), respectively, defined by

DSR
M =

minα E[s(t) − αesM(t)]2

E[s(t)]2
(11)

ISR
M =

minα E[bsM(t) − αesM(t)]2

E[esM(t)]2
. (12)

Thanks to linearity of the (inverse) Fourier transformation it
holds bsM(t) = esM(t) +

1

2
ey1

M(t) +
1

2
ey2

M(t)

Hence, using the fact that s is independent of y1 and y2, and the
expectation values can be estimated via sample mean, denoted by

Ê[·],
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the criteria (10), (11) and (12) can be estimated as

IDSR
M = 1 − Ê

2
[s(t)esM(t)]

Ê[s(t)]2Ê[bsM(t)]2
(13)

DSR
M = 1 − Ê

2
[s(t)esM(t)]

Ê[s(t)]2Ê[esM(t)]2
(14)

ISR
M =

Ê[ ey1
M(t) + ey2

M(t)]2

4 · Ê[esM(t)]2
. (15)

The drawback of the criterion (13) is that it evaluates bad es-
tes bsM coarsely [15] (IDSR ≤ 1), however, we use it since it
ides clear and fair criterion for comparisons.

3. Proposal of the masking method
idea of the binary masking comes from the assumption of W-
int orthogonality (W-DO) of the original signals [6, 7]. In the
-frequency domain, it means that for each pair (ωk, �) only
of the original signals has nonzero STFT representation. In
of our model, this assumption can be relaxed so that either
s(ωk, �) �= 0 or only y1(ωk, �) �= 0 ∨ y2(ωk, �) �= 0.

The binary mask, that separates signal s using known signals
d v only, can be defined as

Mb
τ (ωk, �) =

(
1 |u(ωk, �)| > τ |v(ωk, �)|
0 |u(ωk, �)| ≤ τ |v(ωk, �)|, (16)

re τ is a threshold parameter. This utilizes the W-DO assump-
through the fact that frequencies of the signal s are included
but not included in v.

The drawback of this approach is that the W-DO assumption
not hold exactly in real applications, especially, when pro-

ing non-speech signals (music). Moreover, s(ωk, �) = 0 with
probability even if the signal is sparse. This suggest using

inuous mask instead [13, 14].

Our proposal of the continuous mask is

Mc
τ (ωk, �) =

|u(ωk, �)|2
|u(ωk, �)|2 + τ |v(ωk, �)|2 . (17)

choice was inspired by an ideal mask Mi that minimizes

k, �) −Mi(ωk, �)u(ωk, �)|2. Simple calculus gives

Mi(ωk, �) =
|s(ωk, �)|2 + �(s(ωk, �)y(ωk, �))

|u(ωk, �)|2 (18)

re y(ωk, �) = (y1(ωk, �) + y2(ωk, �))/2, and �(z) stands for
eal part of a complex number z.

Both masks (16) and (17) involve the threshold parameter τ
significantly affects the quality of the separation. Typical be-
ors of the criteria (10)-(12) are demonstrated in Figure 1. For
0 the signal u remain unchanged, and DSR is zero. For τ in-

sing the DSR grows, and ISR usually decays (depends on the
ity of the W-DO assumption). As can be seen, only the IDSR
rion can identify the optimum value of τ . Next, an important
rvation is that the DSR of the binary mask rapidly grows with
nd for that reason the IDSR also), which brings on the sensi-
y to the threshold parameter choice.
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Fig. 1 A speech signal s (Ê[s(t)]2 = 1) of length N = 215

was separated from its stereo mixture with a stereo music signal
(Ê[y1(t)]

2 = Ê[y2(t)]
2 = 0.25). Graphs show IDSR, DSR, and

ISR achieved by the binary mask (16) and by the proposed contin-
uous mask (17) for τ ∈ [0, 25].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

σ

τop
t

BINARY MASK
PROPOSED MASK

0.5 1
−0.8

−0.6

−0.4

−0.2

0

σ

[d
B

]

rel. IDSR

0.5 1
−3

−2

−1

0
rel. DSR

σ
0.5 1

−2

−1

0

1

2
rel. ISR

σ

Fig. 2 Optimum value of τ versus σ, where σ2 = Ê[y1(t)]
2 =

Ê[y2(t)]
2; Ê[s(t)]2 = 1. Small graphs show relative IDSR, DSR,

and ISR defined as IDSRMc
τ /IDSRMb

τ , etc.

3.1. Adaptive choice of the threshold parameter τ

It is difficult to consistently estimate the optimum value of τ (de-
noted by τopt), moreover, this may not be possible without any
prior information about the input sources s, y1, and y2. Here we
exploit a quite obvious fact that the value of τopt significantly de-
pends on input interference-to-signal ratio, in our case, defined by

ISR
in = (E[y1(t)]

2 + E[y2(t)]
2)/E[s(t)]2, (19)

because the masking must be stronger for higher ISRin. This is
achieved by taking higher values of τ .

In simulations, we compute the optimum value τopt through
minimization of the IDSR (13) by means of the function
fminsearch in MatlabTM . The dependence of τopt on ISRin

(through the parameter σ2 = Ê[y1(t)]
2 = Ê[y1(t)]

2) is demon-
strated in Figure 2, where the same signals were used like in Figure
1. Figure 3(a) demonstrates the dependence when random signals
from a database were used in the same experiment.

The leading idea of our proposal for estimation of τopt is that
the signals u and v are dependent in spite of being uncorrelated (or
almost uncorrelated), and that the dependency should be higher for
higher ISRin. We believe that the dependency can be reflected by
the residual interference-to-signal ratio (residual ISR) of ICA com-
ponents separated from signals x = [u, v]T (as it was suggested in
the introduction section the separated signals can be expected to be
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3 Optimum τ of the continuous mask (17) and the depen-
ce measure (21) versus σ (σ2 = Ê[y1(t)]

2 = Ê[y2(t)]
2;

t)]2 = 1) from 1000 independent experiments. In each trial, σ
randomly chosen from [0, 1], signal s of length N = 215 was
omly taken from training database #1 described in Section 4.
nd y2 were, respectively, left and right channel of a random
e of music. Results with τopt > 25 and N · ϑ > 50 were
arded.

ates of u and v). Another approach would be to use a direct
ation of mutual information of u and v [16], but here we may

t from previous utilization of ICA in the general case when
mixing parameters are not known. Here, u and v are explicitly
ned, thus, the running of the ICA method is not necessary.
The residual ISR can be measured in case of ICA algorithms
known performance [11, 12]. For this purpose, we utilize al-

thm EFICA [11] whose residual interference-to-signal ratio
een k-th and �-th estimated components (denoted by bsk, bs�)
timated via

ISR
EF
k� =

1

N

γk(γ� + τ2
� )

τ2
� γk + τ2

k (γ� + τ2
� )

, (20)

re

γk = βk − μ2
k

τk = |μk − ρk|
μk = Ê[bskgk(bsk)]

ρk = Ê[g′
k(bsk)]

βk = Ê[g2
k(bsk)],

gk(·) is a nonlinear function chosen for k-th signal in the al-
thm. Hence, we define a heuristic measure of the dependence
and v as the sum of residual interference of signals bs1 = ubs2 = v, i.e.

ϑ = ISR
EF
12 + ISR

EF
21 . (21)

results in Fig. 3(b) corroborate legitimacy of our approach.
Finally, we propose an ad-hoc choice of the parameter τ for
proposed masking (17) using the measure ϑ by

τ = min{0.5 + a · N · ϑ, 25}, (22)

re a = 0.5689 was determined experimentally as a regression
ficient from results presented in Figure 3.

4. Simulations
ur simulations, we utilize two databases #1 and #2 of, respec-
ly, 215 and 503 utterances of various length recorded from
ch spoken broadcasts. The stereo music signals are taken as
ndom piece of Mike Oldfield’s Ommadawn (part 1), which
ry multifarious and dynamical instrumental composition suit-
for our simulations. We demonstrate the masking method in
experiments.
In the first experiment, signal s of length N = 215 was ran-
ly taken from database #2 and mixed via (2) with a randomly



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−7

−6

−5

−4

−3

−2

−1

0

σ

re
la

tiv
e 

ID
S

R
 [d

B
]

PROPOSED MASK
BINARY MASK τ=τopt

BINARY MASK τ=2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

σ

m
ea

n
τ

PROPOSED MASK
BINARY MASK τ=τopt

CONTINUOUS MASK τ=τopt

Fig. 4 Relative IDSR and average τ versus σ.

Table I. Accuracy achieved by the speech recognizer [17].

σ = 0.3 σ = 0.7 σ = 0.9
clear signals 81.35 81.35 81.35
mixed signals 75.26 60.76 53.90
binary masking, τ = 2 75.91 66.25 60.05
proposed masking 76.63 67.05 61.64

chosen music signal (left channel y1 and right channel y2) in each
of 500 independent trials. The signals were normalized so that
Ê[s(t)]2 = 1 and Ê[y1(t)]

2 = Ê[y2(t)]
2 = σ2. In each trial,

the speech signal s was separated using the continuous mask (17)
with optimum τ , the same mask with the choice (22), the binary
mask (16) with optimum τ , and the binary mask with τ = 2. Rel-
ative IDSRs related to that of the optimum continuous masking

IDSRMc
τopt are shown in Figure 4 together with averaged values

of τs used in forenamed masks. The proposed masking method
outperforms the binary mask even if its optimum τ is used.

The second experiment was done with the whole utterances
from database #2 that were mixed with a random piece of stereo
music of the same length. Here, the data were not normalized be-
fore mixing; ISRin was only roughly controlled by multiplying
y1 and y2 with σ. Each utterance was separated by the proposed
masking method and by the binary mask with τ = 2. In the pro-
posed method, the adaptive choice of τ (22) was done separately
for each segment of length N = 215.

The original utterances s, the mixed signals u, and the sepa-
rated signals were passed through the automatic continuous Czech
speech recognizer [17]. Performance was measured in terms of ac-
curacy defined as 100 · (C − D − I − S)/C, which is computed
via comparison of a reference text with the recognized one. Here,
C is the number of words in the reference text, D is the number
of deletions (words omitted by speech recognizer), I is the num-
ber of insertions (new words added on recognizer’s output), and
S is the number of substitutions (words exchanged with another).
The whole database #2 contain 10322 words. Results in Table I
demonstrate the achieved improvement via the proposed masking
method in terms of the accuracy.
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