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Abstract
Automatic dialect classification has gained interests in the
field of speech research because it is important to characterize
speaker traits and to estimate knowledge that could improve in-
tegrated speech technology (e.g., speech recognition, speaker
recognition). This study addresses novel advances in unsu-
pervised spontaneous Latin American Spanish dialect classifi-
cation. The problem considers the case where no transcripts
are available for train and test data, and speakers are talking
spontaneously. A technique which aims to find the dialect de-
pendence in the untranscribed audio by selecting the most dis-
criminative Gaussian mixtures and selecting the most discrim-
inative frames of speech is proposed. The Gaussian Mixture
Model (GMM) based classifier is retrained after the dialect de-
pendence information is identified. Both the MS-GMM (GMM
trained with Mixture Selection) and FS-GMM (GMM trained
with Frame Selection) classifiers improve dialect classification
performance significantly. Using 122 speakers across three di-
alects of Spanish with 3.3 hours of speech, the relative error
reduction is 30.4% and 26.1% respectively.

Index Terms: Gaussian mixture selection, dialect classifica-
tion, accent classification, data selection, GMM

1. Introduction
Dialect/accent is a pattern of pronunciation and/or vocabulary
selection in a language used by the community of native/non-
native speakers belonging to some geographical region. Dialect
is one of the most important factors next to gender that influ-
ence automatic speech recognition (ASR) performance [3, 4].
Dialect knowledge could be used in various components of the
ASR system such as pronunciation modeling [9], lexicon adap-
tation [12], and acoustic model training [7] and adaptation [2].
Dialect knowledge could be applied in automatic call center and
directory lookup service [14].

Our efforts on dialect identification focus on classifying
unconstrained audio, which means unknown gender, unknown
speaker, and unknown text. If transcripts exist for the associ-
ated training audio, we have previously proposed a word-based
dialect classification (WDC) algorithm which turns the text-
independent dialect classification problem into a text-dependent
dialect classification problem [5] and achieves very high classi-
fication accuracy. If the training data size is too small to train
the word specific models, a context adaptive training (CAT) al-
gorithm was proposed to solve this problem and also achieves
high classification accuracy [6]. If there are no transcripts in the
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ning data, the above algorithms cannot be applied, and there-
e an unsupervised algorithm must be formulated. The Gaus-
n Mixture Model (GMM) based classifier has been applied
nsupervised dialect classification [11] and text-independent
aker recognition [10] successfully. In this study, the GMM-
ed algorithm is the baseline system.

Spanish dialectology is fundamentally different than En-
h dialectology. Spanish dialects are concentrated on certain
nemes being at certain positions [1, 8]. For example, /s/ at
lable final is dropped by Cuban and is reinforced by Peru-
n. The GMM classifier trained and tested on human labels
ich only includes this information can achieve 98% accu-
y on 20-second audio files [13]. The focus in this study is to
ntify that part of the audio which corresponds to the dialect
erence in order to produce the most discriminative model.
is is the core idea of data selection or frame selection for
del training in dialect classification. The Gaussian mixtures
applied to model the acoustic space of the training data. We
ect that some of the mixtures correspond to the dialect dif-
ence in Spanish, while other mixtures correspond to the non-
lect-dependent acoustic events. If we can identify the dialect
ted Gaussian mixtures and use them to form a new model,
ill be a more discriminative model. This represents the idea
ind Gaussian mixture selection for model training in dialect
ssification.

2. Baseline Classification Algorithm
ce there are no transcripts for the train and test data, it is dif-
lt to build a supervised generative model such as an HMM.
e GMM classifier is a popular method for text-independent
aker recognition [10] and dialect classification [11]. We use
GMM classifier as our baseline system. Fig. 1 shows the
ck diagram of the baseline GMM training system, where N
he number of pre-defined dialects. The GMM model for di-
ct i is trained with data from dialect i. A GMM based gender
ssifier is trained similarly and is applied prior to dialect clas-
cation. Fig. 2 shows the block diagram of the unsupervised
M based dialect classification system. We will describe the
nce remover and feature extraction in the experimental sec-
.

3. Gaussian Mixture Selection on GMM
Re-training (MS-GMM)

e primary differences for most Spanish dialects are on cer-
phonemes at certain positions [1, 8]. For example, /s/ at the
lable final position is dropped by Cuban and is reinforced
Peruvian. The GMM classifier trained and tested on human
els which only includes the above information can achieve
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Figure 1: Baseline GMM based unsupervised training system

98% accuracy on 20-second audio files [13]. The Gaussian mix-
tures represent the acoustic space of the training data. We ex-
pect some Gaussian mixtures will represent dialect-dependent
acoustic characteristics, and others to be less dialect-dependent
and could in fact cause confusion for dialect classification. In
this section, we will formulate a scheme to detect the most
dialect-dependent Gaussian mixtures and sort the mixtures ac-
cording to their discriminating abilities. The new GMM is then
obtained by selecting the top discriminative mixtures.
Let Λi be the GMM of dialect i, and λij ∼

N (wij , μij , Σij) be the jth Gaussian mixture of Λi, where
i = 1, 2, . . . , N , j = 1, 2, . . . , M , and N is the number of
dialects, M is the number of mixtures for each GMM.1 The
number of speech frames in the training data is Ti for dialect
i, and the total number of speech frames in the training data
is T =

PN
i=1

Ti. The discriminating ability of the Gaussian
mixture λij is defined as,

ζij =

TX
t=1

δijtPr(ot|λij), (1)

where Pr(ot|λij) is the weighted probability of mixture λij

generating the speech frame ot, which is defined as,

Pr(ot|λij) = wij(2π)−n/2|Σij |
−1/2 × (2)

exp{−
1

2
(ot − μij)

′Σ−1

ij (ot − μij)}.

Here, δijt in Eq. 1 is defined as,

δijt =

8>>>>>>>>>><
>>>>>>>>>>:

1 if i = arg max
c

Pr(ot|Λc),

and {i, j} = arg max
{c,d}

Pr(ot|λcd),

and ot ∈ class i;
−1 if i = arg max

c
Pr(ot|Λc),

and {i, j} = arg max
{c,d}

Pr(ot|λcd),

and ot �∈ class i;
0 else.

(3)

where c = 1, 2, . . . , N, d = 1, 2, . . . , M , n is the number of
dimensions of the feature vector, and

Pr(ot|Λc) =

MX
d=1

Pr(ot|λcd). (4)

The larger the value of ζij , the larger the discriminating
ability of the jth mixture in the ith GMM. For each GMM, the
mixtures are sorted based on the discriminating ability measure.
The new GMM is formulated by selecting the top discriminative

1The number of mixtures for each GMM can be different. We use
the same number of mixtures for the GMMs of the dialects in our study.
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tures in the old GMM and the weights are recalculated in
er to ensure

P
j wij = 1 in the new GMM. The evaluation

cess is exactly the same as the baseline GMM classification
tem. In our study, we formulated four variations of the above
eme. If we remove the probability term in the right hand side
Eq. 1, ζij is actually the discriminative speech frame count
jth mixture in the ith GMM. We name the original ζij as
probability score. The frame count and probability score
culated above are the raw values. If we remove the -1 term
Eq. 3, the calculated frame count and probability score are
erred to as the normalized values. In this case, ζij is always
-negative. In summary, the Gaussian mixture discriminat-
ability is measured in four difference scores: the raw frame
nt, the normalized frame count, the raw probability score,
the normalized probability score.
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ure 2: The GMM based unsupervised dialect classification
tem

. Frame Selection on GMM Re-training
(FS-GMM)

addition to extracting the dialect-dependent information in
acoustic space represented by the Gaussian mixtures, we
extract the dialect-dependent discriminative information in
training data directly. Alternatively, we can remove the
st confusing speech frames in the training data and train new
Ms with the remaining data (i.e., this algorithm is termed
-GMM). The speech frame ot is called a confusing frame if

i = arg max
c=1,...,N

Pr(ot|Λc), (5)

and ot �∈ class i.

en the number of consecutive confusing frames over time
reater than a pre-defined threshold (0.1 s in our study), we
ieve these frames to be “garbage” frames. After removing
the garbage frames, a new set of GMMs (i.e., discrimina-
GMMs) are trained by using the remaining (i.e., discrimi-
ive) speech frames. The garbage frames from all the dialects
grouped together and a garbage GMM is trained. The final
M is obtained by combining the discriminative GMM with
garbage model. There are prior probabilities for model com-
ing, which determines how much weight will be assigned to
discriminative GMM and the garbage GMM. Fig. 3 shows
block diagram of the GMM re-training based on frame se-
tion.

In the combined new model, the Gaussian mixtures from
garbage model will not help discriminate the classes, but
y will contribute to map the confusing acoustic events. The
lect-dependent acoustic events are mapped to the Gaussian
tures from the discriminative model.
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Figure 3: Discriminative GMM training based on frame selec-
tion

5. Experiments
The corpus used in our study consists of the Latin Ameri-
can Spanish dialect speech from Cuba, Peru and Puerto Rico,
which is described in [14]. The spontaneous speech portion
was recorded in an interview style. The interviewer gave sam-
ple topics such as “describe your family”, and the subject would
respond. The interviewer would give some hints to keep the
subject talking. The subject used a head-mounted microphone,
which also captured the speech from the interviewer at a much
lower amplitude since the interviewer sat far away from the mi-
crophone. The speech from both the interviewer and the subject
were recorded on the same channel. We note that there were
long periods of silence in the audio. To address the above prob-
lems, we build a silence remover to eliminate the long silence
and the speech from the interviewer. The silence remover is
based on an overall energy measure. Table 1 summarizes in-
formation of the training and test data after the silence removal
process. PR is the dialect from Puerto Rico. The speakers used
for training and testing have roughly the same number of male
and female speakers. Since the size of the corpus is limited, we
did not set aside data for development use, and therefore all of
the data is used either in training or test. We will illustrate sev-
eral combinations of parameters in the experimental results. In
an actual application, a development data set can be applied to
select the best parameters.

Table 1: The 3-dialect Spanish corpus used in our study
Data Training data Testing data

Cuba Peru PR Cuba Peru PR

Speakers 29 29 26 13 13 12

Minutes 52 53 36 21 23 17

The first experiment is to determine which discriminative
measure in Sec. 3 can sort the mixtures consistently for both
the training and unseen data. Therefore, the most confusing
mixtures should be excluded and a new set of GMMs can be
generated. Fig. 4 shows the mixture sorting using the four
discriminative measures described in Sec. 3 (raw frame count,
normalized frame count, raw probability score and normalized
probability score). The points in the figures are the numeri-
cal labels of mixtures. Different colors mean different dialect
classes (blue: Cuba; green: Peru; red: Puerto Rico). The X and
Y axes represent the number of mixtures. We use 200 mixtures
for the baseline GMM training in Fig. 4, Fig. 5 and Table 2.
Fig. 4 is generated by first using the training data as the input to
sort the mixtures of the baseline GMMs and obtain new GMMs,
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n using the testing data as the input to sort the mixtures of the
GMMs, the sequence of mixtures are drawn in the figure. If
top discriminative mixtures in the training data are also the
discriminative mixtures in the testing data, the points in the
re will close to the line y = x. If the top discriminative mix-
es in the training data are the least discriminative mixtures in
testing data, the points will close to the line y = 200 − x.
e ideal case is that all the points are on the line y = x. From
. 4, we observe that mixture sorting based on the normalized
bability score can identify the top discriminative mixtures in
ery consistent style for both training and testing data. It also
ws that the development data is not necessary for mixture
ting, the Gaussian mixtures can be sorted using the training
a on original GMMs. Table 2 shows the classification accu-
y of the mixture selected GMM (MS-GMM) with the four
criminative measures. We pick the top 75% of the mixtures
the new GMMs. We observe that all four mixture selection
emes can improve the classification accuracy. The normal-
d probability score is the best scheme for sorting the mix-
es. We will use this scheme for the following experiments.

50 100 150 200

(a)

0 50 100 150 200
0

50

100

150

200
(b)

50 100 150 200

(c)

0 50 100 150 200
0

50

100

150

200
(d)

ure 4: Gaussian mixture sorting using the four discrimina-
measures. (a): based on raw frame count; (b): based on

malized frame count; (c): based on raw probability score;
based on normalized probability score.

le 2: Classification accuracy of the MS-GMMs formulated
different schemes, the top 75% mixtures are selected. The
els (a)-(d) are the same as the labels in Fig. 4.
Baseline (a) (b) (c) (d)

73.5% 75.5% 78.1% 76.4% 81.6%

Next, we show how the percentage of selected mixtures af-
s classification performance. Fig. 5 shows the classifica-
accuracy of the MS-GMM formulated by picking different
centages of the top mixtures. When the top 100% of the
tures are selected, the system becomes the baseline GMMs.
m Fig. 5, we observe that (i) we have to keep at least 50%
he original mixtures; (ii) the classification performance im-
ves if the least discriminative mixtures (i.e., the most con-
ng mixtures) are removed.
We also train 300, 600 and 1000 mixtures for the baseline
Ms, and the top 50% to 100% of the mixtures are selected
ed on the normalized probability score measure. The results
shown in Fig. 6. When the 100% of mixtures are selected,
ctually is the baseline GMMs. The classification accuracy



of the baseline 300, 600, and 1000 mixtures GMM is 73.7%,
74.3% and 73.7% respectively as shown in Fig. 6. We ob-
serve several interesting results: (i) when picking 50% to 95%
of the sorted mixtures, the new GMMs outperform the base-
line GMMs; (ii) if more mixtures are in the baseline GMMs,
a smaller portion of the sorted mixtures are required to obtain
the best GMMs. In Fig. 6, we observe that when 65% of
the mixtures are selected for 1000-mixture baseline GMMs, the
new GMMs achieve the best performance; for the 600-mixture
GMMs and 300-mixture GMMs, the new GMMs achieve the
best performance when 75% and 80% of the mixtures are se-
lected respectively.

Having established the procedure for discriminative mix-
ture selection, we can apply the same concepts for frame selec-
tion. The Frame selection based GMM (FS-GMM) retraining
method will obtain the discriminative model and the garbage
model. The final model is obtained by combining the discrim-
inative model and the garbage model with pre-defined prior
probabilities. We still use the 300, 600 and 1000 mixtures for
the baseline GMMs in this experiment. Fig. 7 shows the classi-
fication accuracy of the combined model generated in different
prior probabilities. From Fig. 7, we observe interesting results:
(i) the discriminative model alone only achieves marginal im-
provement (i.e., the prior probability is 1 for the discriminative
model in Fig. 7); (ii) the “garbage” model will help the dialect
classification.

6. Conclusions
Dialect differences are reflected using a range of acoustic
events. These acoustic events can be seperated into dialect dis-
criminating content, and dialect neutral/distractive content. In
this paper, we have proposed the mixture selection and frame
selection algorithms (i.e., MS-GMM and FS-GMM) to iden-
tify dialect dependent structure. The retrained GMMs signifi-
cantly outperform baseline GMMs. In the 600-mixture GMMs,
the baseline model achieves 74.3% accuracy; the MS-GMM
achieves 82.1% accuracy; and the FS-GMM achieves 81.0%
accuracy. The relative error reduction is 30.4% and 26.1% re-
spectively. This advancement has therefore taken an important
step towards effective dialect classification while maintaining
consistent level of memory/computing reources.
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Figure 5: Classification accuracy of the MS-GMMs by selecting
different percentage of discriminative mixtures. X-axis: per-
centage of discriminative mixtures being selected (from 10% to
100%); Y-axis: classification accuracy (%).
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