
WEIGHTED CODEBOOK MAPPI

ENHANCEMENT USING HARM

Esfandiar Zavarehei, Saeed 

Department of Electronic and Co
Brunel University, Lo

{esfandiar.zavarehei, saeed.vasegh

Abstract
Most noisy speech enhancement methods result in partial 
suppression and distortion of speech spectrum. At instances 
when the local signal-to-noise ratio at a frequency band is very 
low speech partials are often obliterated. In this paper a 
method for enhancement and restoration of noisy speech based 
on a harmonic-noise model (HNM) is introduced. A HNM 
imposes a temporal-spectral structure that may reduce 
processing artifacts. The restoration process is enhanced 
through incorporation of a prior HNM of clean speech stored 
in a pre-trained codebook. The restored speech is a SNR-
dependent combination of the de-noised observation and the 
speech obtained from weighted codebook mapping. The 
additional improvements of speech quality resulting from the 
proposed method in comparison to conventional and modern 
speech enhancement systems are evaluated. The results show 
that the proposed method improves the quality of noisy speech 
and restores much of the information lost to noise.  
Index Terms: speech enhancement, codebook mapping, 
harmonic noise model 

1.  Introduction 
Enhancement of speech quality impaired by background 

noise is one of the most challenging issues in the field of 
speech processing. The ongoing competitive research for 
development of more suitable mathematical models of speech 
and more robust methods for estimation (and perhaps tracking) 
of noise and speech parameters are evidence of the complexity 
of the problem and the importance of new solutions. 

Common speech enhancement methods suppress the 
background noise through application of an adaptive gain 
applied to the short-time spectral amplitude (STSA) of the 
noisy speech signal [1][2]. Generally, the suppression gain of 
these estimators depends on the estimates of signal-to-noise 
ratio (SNR) spectrum. The inaccuracy of the estimates of the 
SNR, together with the non-optimal assumptions underlying 
the derivation of the estimators (e.g. speech and noise 
distributions) result in two major artifacts observed in the 
enhanced signal: i) the residual noise also known as musical 
noise, and ii) distortion and suppression of speech signal and 
in particular the harmonic structure [3][4]. These artifacts are 
particularly observed at instances when the SNR spectrum at a 
frequency band is very low. 

One of the main issues addressed in this paper is a common 
form of processing distortion, namely severe suppression of 
parts spectrogram of speech, which is common to most speech 
enhancement methods in moderate to low SNR conditions. 
The major objectives of this work are: i) to apply HNM model 
of speech for reducing the amount of residual noise, and ii) to 
incorporate the prior information about the speech into the 
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tem in order to recover at least some of the 
orted/suppressed speech.  
igure 1 shows the block diagram of the speech 
ancement system. The system is divided to three sub-
tems separated with dotted lines. The first sub-system is the 
plified block diagram of a conventional noise reduction 
tem. The a priori SNR estimation block [1] is not shown 
e and is assumed to be included in the noise reduction 
ck. The second sub-system is the speech modelling module. 
s part is discussed in section 2. The last stage of the block 
ram of Figure 1 is the reconstruction sub-system. At this 
e the distorted/suppressed portions of speech are recovered 
g a weighted codebook mapping explained in section 3. In 
tion 4 the overall performance of the system is evaluated 
 practical issues are presented. Conclusions are drawn in 
tion 5. 

2.  Harmonic-Noise Model 
NMs are widely employed in speech processing systems 
source coding [5], speech enhancement [6], etc. In this 
er a variant of HNM is used which produces high quality 
thesized speech. Speech frames are analyzed and 
thesized entirely in spectral amplitude domain. Three 
ameters are extracted from each harmonic sub-band: 
litude Ak, harmonicity Vk and harmonic central frequency 
he unprocessed phase spectrum is used for re-synthesis. 

 harmonic amplitudes represent the square-root energy of 
corresponding sub-band and the harmonicity degree is a 
-valued measure between 0 and 1 representing the voicing 
ree of each sub-band.  
iven the set of HNM parameters for a speech frame the 

ctral amplitude is regenerated as a weighted summation of 
aussian-shaped spectral amplitude function, G(f) and a 
leigh distributed [1] random spectral amplitude, R(f): 

1
( ) ( ) 1

N

HNM k k k k k
k

X f A V G f f V R f f  (1) 

re XHNM(f) is the HNM-synthesized amplitude spectrum, N
e number of harmonics, Ak, Vk and fk are the corresponding 
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igure 1. Block diagram of speech enhancement system 
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HNM parameters of the kth harmonic sub-band. 

Fi

2.1. Harmonic and Fundamental Frequency Tracking 

The fundamental frequency (or pitch) track of the signal is 
extracted using a method that utilises the autocorrelation 
function for an initial estimate of pitch track and spectral 
matching for a subsequent refined estimate described in [7].  

Due to possible inaccuracy of pitch estimation algorithm 
multiples of the pitch frequency might not exactly coincide 
with true harmonic frequencies. Although this displacement 
may be insignificant on its own, it affects the calculation of 
other HNM parameters. Hence the exact location of each 
harmonic frequency is extracted locally to maximize the 
harmonicity of that harmonic, i.e. to fit best to that harmonic: 

0 0argmax     k k search H search Hf V f kF F f kF F  (2) 

where F0 is the fundamental  frequency and FH is the search 
range empirically set to 30Hz. The sensitivity of the algorithm 
to errors in the estimate of the fundamental frequency due to 
the background noise is discussed in section 4. 
2.2. HNM Parameter Extraction 
Given that X(f) is the spectral amplitude of an arbitrary frame, 
HNM parameters are extracted as: 

2
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f f

k k
f f f

k k k
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X f A G f f
V V f

A
 (3) 

2
k

k

f f

k
f f f

A X f    (4) 

where 2 f  is the harmonic bandwidth and: 
22.2exp

60
fG f    (5) 

2 1
f

f f
G f     (6) 

2 1
f

f f
R f     (7) 

Although the result of right hand side of equation (3) is not 
guaranteed to be between 0 and 1, in practice this is always the 
case. Equation (5) is the Gaussian-shaped function used to 
model the harmonics. In [7] a similar method is used to model 
the harmonics and make the voicing decisions, using the 
spectral amplitude of the hamming window. The parameter 
in Equation (5) is calculated so that the energy of the G(f) in 
the determined range of [- f, f ] is equal to 1. The value of  
depends on the FFT size, sampling frequency and harmonic 
sub-band range f. In practice, one may use an adaptive value 
for f, based on the fundamental frequency, to synthesize the 
whole range between each two harmonics. However, as the 
value of G(f) approaches zero for rather large values of f, we 
decided to use a fixed value of f=60Hz for analysis and 
synthesis purposes. The value of  for a FFT size of 1024 at a 
sampling rate of 8 KHz is calculated as =0.4416. Figure 2 
shows G(f) for obtained using mentioned set of values. 

The HNM model enforces a harmonic structure on speech 
signals. Synthesizing a noisy speech using its HNM 
parameters emphasizes the harmonic structure of speech and 
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gure 2. The Gaussian window used to model harmonics 

othes out some of the background noise. The effect of 
h a process on quality of noisy speech signals is measured 
h Perceptual Evaluation of Speech Quality (PESQ) and 
strated for different SNRs in Figure 3. A set of 100 
rances are randomly selected from wall street journal 
SJ) database for evaluation purposes.  

3.  Weighted Codebook Mapping (WCBM) 
l-life noises often have a low-pass spectrum and most of 
r energy is concentrated in a rather limited frequency band. 
a result of applying noise reduction these parts of speech 
als are sometimes over-suppressed and distorted. In order 

reconstruct the speech spectrum in these frequencies, a 
ghted codebook-mapping (WCBM) method is 
lemented to incorporate prior information on clean speech 
cture into the estimation process. 

 Codebook training 

odebook is trained on energy-normalized harmonic values 
lean speech and used in the restoration of the harmonic 
litudes that have been severely distorted or drowned in 

se. The harmonic amplitude values are normalized as 

2
k

k
A

AB     (8) 

re A=[A1, A2, …, AN] and B=[BB1, B2B , …, BBN] are the 
monic amplitude and normalized harmonic amplitude 
tors respectively. The size of codebook is experimentally 
to 1024 and the K-means algorithm is used for training the 
ebook. The rationale for normalizing energy of the 
monic amplitudes is that the codebook becomes energy-
ependent while preserving the shape of the spectrum. 
lidian distance is used for clustering: 

2
,arg min k k m

m k
l B C      for training (9) 

0 2 4 6 8 10 12 14 16 18 20
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

SNR (dB)

P
E

S
Q

 S
co

re

Car Noise

Noisy Speech
HNM-Synthesized

re 3. The effect of HNM analysis/synthesis on noisy 
ch (car noise) 



where l is the nearest codeword to the data vector B, and Cm is 
the mth codeword of the codebook. 

The speaker-independent normalized harmonic amplitude 
codebook is trained on speech utterances from WSJ database. 
A total of 420 utterances are randomly selected from different 
speakers. The total number of training (data) vectors is equal 
to 300107 where the time shift between successive vectors is 
10ms, i.e. the total training speech is about 50 minutes. 

Furthermore, another codebook is trained on the 
harmonicity degree of the harmonic sub-bands, Vks, using the 
same database and using K-means algorithm. 
3.2. WCBM Algorithm 

The HNM parameters of the output of the noise reduction 
module are extracted. The weighted distance between HNM 
parameters of the noise-reduced signal and the codewords are 
estimated as: 

2

, ,m k NR k k m
k

D W B C    (10) Figu
that 
(but
WCwhere BBNR,k is energy-normalized amplitude of the k

harmonic obtained from “noise-reduced” HNM amplitude 
vector, A

th

NR:

,

2
NR k

NR
NR

k
A

AB     (11) 

and Wk is the weight of the kth harmonic. The value of Wk is 
between 0 and 1 and is used as a measure of reliablility of the 
noise-reduced estimate. The a priori SNR of the signal may be 
used for obtaining these weights: 

, log min log max logk k

k

k

f f

k
f f f

k

f

W k

 (12) 

where k and (f) are a priori SNR of the kth sub-band and 
frequency f respectively. Several different algorithms are 
proposed in the literature for estimation of a priori SNR, from 
decision-directed method introduced by Ephraim [1], to the 
most recent algorithms such as non-causal a priori estimation 
[2]. Furthermore, to emphasize the effect of lower harmonics 
on estimation, the weights of Equation (12) are weighted with 
a function of frequency. A fixed frequency-dependent weight 
may be used for this purpose. In this work we use the 
following fixed weight function to modify the weights 
calculated in Equation (12):

,0.125 cos 2 7 .k k sW f F kW   (13) 

An estimate of the HNM amplitude vector is obtained from the 
L codewords with lowest distances as: 

CB j j
j

qB C     (14) 

where qj is the weight of the codeword Cj and is proportional 
to the reciprocal of the distance of the codeword Cj from HNM 
normalized amplitudes. The resulting energy-normalized 
vector needs to be de-normalized, before combining with the 
noise reduced vector:  

CB CBdnA B     (15) 
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re 4. Spectral amplitude of clean speech superimposed on 
of (top) noisy (middle) de-noised with MMSE-LSA and 

tom) de-noised with MMSE-LSA and restored using 
BM

2

, ,

, ,
2

,

arg min E

       =

dn k NR k CB k
k

k NR k CB k

k CB k

W A B

W A B
W B

 (16) 

e that Equation (16) dn is calculated so that elements of A
h corresponding higher weights are least changed. The 
lting vector, ACB is then combined with the noise-reduced 

tor, ANR in a way that elements with higher weights, Wk,
less affected than those with lower weights: 

,
ˆ 1k k NR k k CBA W A W A ,k   (17) 

 harmonicities of harmonics are mapped to the harmonicity 
ebook using a similar procedure, without using the energy-
malization.  

4.  Performance Evaluation 
igure 4 illustrates the amplitude spectrum of a sample 
ech frame from 0 to 2 KHz. The top figure shows the effect 
noise spectrum (at SNR=5dB Train noise). The middle 
re shows the effect of MMSE log spectral amplitude 
A) estimator [1] noise reduction algorithm on the same 
sy spectrum. It is evident that the harmonic structure of the 
ctrum is distorted and suppressed in frequency bands where 
se is dominant. The bottom plot shows the effect of WCBM 
this frame. The harmonic structure is restored in terms of 
litude and shape at most harmonics. Similar effects can be 

n in Figure 5 where the spectrogram of the signal is 
strated in different states of processing. 
he performance of the WCBM system when it is used as a 
t-processing module with a noise reduction module is 
luated. Three different methods are used for noise 
uction and the performance of each of these modules on its 
 and when connected to the WCBM system is evaluated: i) 
SE-LSA ii) non-causal (NC) a priori SNR estimation with 
SE-LSA [2] and iii) DFT domain Kalman filter with 

related noise DFTK [8]. 100 utterances are randomly 
cted from WSJ database. Train and babble noises at 



different SNRs are added to the speech signals. PESQ [8] 
scores and log-spectral distances (LSD) [2] of the noisy and 
de-noised signals are calculated and averaged. Tables 1 and 2 
shows the improvement of PESQ and LSD of the de-noised 
and reconstructed speech compared to the noisy speech. It is 
evident that at low SNRs WCBM improves these measures 
significantly. 

Table 1. PESQ score improvement of three different methods
with and without WCBM 

Input SNR (dB) Noise 
Type 

 De-noise Method 
0 5 10 15

 MMSE-LSA 0.36 0.47 0.46 0.38
 MMSE-LSA+WCBM 0.48 0.51 0.47 0.38
 NC 0.23 0.32 0.32 0.27
 NC+WCBM 0.48 0.46 0.35 0.27
 DFTK 0.48 0.57 0.57 0.54

Train 
Noise 

 DFTK+WCBM 0.91 0.84 0.75 0.61
 MMSE-LSA 0.11 0.10 0.10 0.09
 MMSE-LSA+WCBM 0.24 0.23 0.18 0.10
 NC 0.27 0.23 0.17 0.09
 NC+WCBM 0.69 0.48 0.32 0.12
 DFTK 0.27 0.22 0.18 0.10

Babble
Noise 

 DFTK+WCBM 0.72 0.49 0.35 0.14

Tab
meth

Nois
Typ
Trai
Nois

Bab
Nois

Tab
and 

Nois
Typ
Trai
Nois

Bab
Nois

To determine the sensitivity of the proposed system to pitch 
errors, its performance is evaluated in the case when the pitch 
frequency is extracted from the clean speech. Note that the 
harmonic frequencies, including the fundamental, are then 
extracted using the noisy speech from Equation (2). MMSE-
LSA is used as the core noise reduction method. A comparison 
between the results of Tables 1 to 3 shows that using the clean 
pitch track improves the quality of the resulting speech in 
terms of PESQ and LSD. Listening tests, however, reveal that 
the dissimilarities are only audible in instances where a 
substantial pitch error (e.g. double pitch) has occurred. 

5.  Conclusion 
A weighted codebook mapping method for reconstruction of 
distorted de-noised speech is introduced. This method uses a 
simple heuristic technique to incorporate prior information for 
reviving severely distorted harmonic bands of speech spectrum 
lost to noise. The performance evaluation results show that 
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Figure 5. The spectrogram of: (a) clean speech (b) noisy 
speech (SNR=5dB restaurant noise) (c) MMSE-LSA and (d) 
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le 2. LSD improvement (reduction) of three different
ods with and without WCBM 

Input SNR (dB) e 
e 

 De-noise Method 
0 5 10 15

 MMSE-LSA 0.11 0.14 0.13 0.11
 MMSE-LSA+WCBM 0.15 0.15 0.14 0.11
 NC 0.13 0.11 0.11 0.08
 NC+WCBM 0.15 0.14 0.11 0.08
 DFTK 0.15 0.18 0.17 0.15

n 
e 

 DFTK+WCBM 0.27 0.25 0.21 0.19
 MMSE-LSA 0.03 0.03 0.03 0.03
 MMSE-LSA+WCBM 0.07 0.07 0.05 0.03
 NC 0.08 0.07 0.05 0.03
 NC+WCBM 0.21 0.15 0.10 0.04
 DFTK 0.08 0.06 0.05 0.03

ble
e 

 DFTK+WCBM 0.23 0.14 0.11 0.04

le 3. PESQ and LSD improvement using MMSE-LSA 
WCBM with clean pitch 

Input SNR (dB) e 
e 

 Improvement when 
clean pitch is used 0 5 10 15
PESQ  0.61 0.57 0.49 0.38
LSD  0.19 0.16 0.14 0.11

n 
e 

Pitch Error % 17 11 6 4
PESQ  0.33 0.28 0.20 0.15
LSD  0.12 0.13 0.09 0.06

ble
e 

Pitch Error % 21 13 7 3

BM improves the quality of processed signal. The method 
ld be especially useful if used with vocoders based on 
M model of speech. This possibility is being investigated. 
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