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Abstract
Our former study [1] has shown that maximum likelihood (ML)
based frame selection, which selects reliable frames from a high
resolution along the time axis, helps to improve the discrimination
between phonemes. In this paper, we present our recent research
on single frame selection for a phoneme classification task. A new
single selection, which only selects one frame for one state in an
Hidden Markov Model (HMM), is proposed. The new technique
takes likelihoods of frames and their positions in a phoneme seg-
ment into account at the same time, and selects very few frames
to represent the spectral evolution of the phoneme. Furthermore,
we also show that for a low model complexity, a phoneme model
trained by selected frames is more discriminative than a model us-
ing all frames.
Index Terms: phoneme classification, frame selection.

1. Introduction
While it is commonly agreed that a fixed frame rate, typically
10ms, is not consistent with human perception [2], the fixed frame
rate is still used in most of state-of-the-art speech recognizers
because of its simplicity and convenience. Thereby, speech frames
are often assigned the same importance in pattern classification.
However, in the case of continuous speech recognition, observa-
tions at the beginning and end of a phoneme are highly influenced
by contextual information. Hence, the distributions of these
observations that are dominated by co-articulation are broad and
the their likelihoods might not be informative. In fact, as claimed
in [3], the frames at boundaries may carry more speaker-related
information, and are often vague for the speech recognition task.
At the same time observations in the steady zone if any - although
most likely more reliable - tend to be similar and add redundant
information in the decision process.
Some researchers are looking for a substitution for the fixed frame
rate. These efforts include variable frame rate (VFR) [4, 5],
duration normalization [6], etc. In our former study [1], we
proposed a ML-based frame selection technique, which selects
reliable frames from a tiny frame shift, to classify phonemes by
assuming the boundaries of phonemes are known priorly. The
frame selection technique was realized by two methods: multiple
selection and single selection. While the multiple selection can
be incorporated into a standard Viterbi decoder procedure after
which the average frame rate is equal to a pre-defined value, the
single selection selects only one frame to represent one state in
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MM regardless of the duration of a testing segment. In this
er, we further study factors that influence the accuracy of the
le selection and investigate the characteristics of the selected
es.
every frame contributes equally in a decision process. The
le selection attempts to select the most distinguish one for
corresponding HMM state. At least two factors affect the
dity of selecting the most representative frame to better model
spectral evolution of a phoneme. One is the likelihood of a
cted frame, the other is its position in a phoneme segment.
1] we have shown that the ML-based dynamic frame selection
ks well for phoneme classification. We will see in this paper
the positions of selected frames are also crucial for the
le selection. We also find an approach for combining these
factors. Our experimental results on the TIMIT database
w that using few frames selected by the combination method
omparable with the traditional fixed frame rate scheme.
reover, we observe that if a phoneme model is trained by the
cted frames instead of using all frames, the effect is dual: in
w model complexity, it shows more discriminative power,
le in a high model complexity, due to limited training data, its
ormance is deteriorated.

2. Single frame selection
main purpose of the single frame selection is to find one typ-
and representative frame for each HMM state, and the char-
ristic of a phoneme is only depicted by the selected frames,
out taking other discarded frames into account. Some meth-
are proposed to select the appropriate frames.

SEL1: ML-based single selection

single selection in our former work [1] is based on an ML
rion, which first statistically estimates the expected positions
he selected frames and the mean state durations, then linearly
rs the likelihoods of frames which are too far away from the
ected positions. In this paper we will first investigate a single
ction approach, called SEL1, which only considers the likeli-
ds of frames, without the existence of the linear filter.
criterion can be formulated as follows. Denote the indices of
selected frame for state j (1 ≤ j ≤ N ) as tj (1 ≤ tj−1 ≤ tj ≤
where N is the number of states for a phoneme HMM, and T
e number of frames in a phoneme segment, the best score S
a certain phoneme model is

S = max
∀tj

NX

i=1

bi(Xtj
), (1)
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where bi(Xt) is the log likelihood of emitting feature vector Xt

generated by state i. The indices of the selected frames can be
retrieved as

tj = argmax(S) (2)

2.2. SEL2: fixed percentages based single selection

Another approach to select frames, called SEL2, is to simply pick
frames at fixed percentages of a phoneme segment without taking
their likelihoods into account [7]. For example, we could arbitrar-
ily select frames at 20%, 50% and 80% of every phoneme segment
for a three-state HMM, each frame representing one state. Many
different combinations of fixed percentages are defined priorly and
then tested on the training set. Among those combinations, the best
one is grafted to the evaluation set. Note that in this case, the se-
lected frame sets are identical for different phoneme classes.
Assume the fixed percentages cj are pre-defined, tj is calculated
as tj = int(cj × T ). The score for a phoneme model is nothing
more than the sum of the likelihoods of the frames at tj :

S =
NX

i=1

bi(Xti
) (3)

2.3. SEL3: combination based single selection

There are limitations contained in the SEL1 and the SEL2 implic-
itly. For example, the SEL1 does not consider the positions where
the frames are selected; when a small part of a phoneme segment
is very close to an incorrect phoneme model, with the SEL1, all se-
lected frames for that phoneme model probably originate from the
small part, resulting in a mis-classification. For the SEL2, frames
at fixed positions can be noisy or less informative by chance.
In fact the advantages and weaknesses of the SEL1 and SEL2 are
complementary. SEL3 is an attempt to compromise the SEL1 and
SEL2. The main idea of the SEL3 is that frames lying at the appro-
priate positions and meanwhile having high likelihood probabili-
ties would have more opportunity to be selected than other frames.
In other words, two factors are considered at the same time: se-
lecting too close frames and selecting frames with low likelihood
will be penalized and then prohibited. In our experiment, the ap-
propriate positions are decided empirically by the optimal fixed
percentages obtained from the SEL2.
Suppose the series of the optimal fixed percentages in the training
set is cj , 1 ≤ j ≤ N . The best distances between encouraged se-
lected frames then are dj = cj − cj−1 (c0 = 0). To emphasize the
importance of the span between the selected frames, we impose a
filter on frames, which is defined as:

F (t1, t2, ..., tN) =
NY

j=1

k

(
tj−tj−1

T
− dj)2 + 1

(4)

where the parameter k is a scale factor, t0 = 0, and t1, t2, ..., tN

indicate any series of possible selected frames. Then, the sum of
their likelihoods is filtered as:

S(t1, t2, ..., tN) = F (t1, t2, ..., tN) ×
NX

i=1

bi(Xti
) (5)

By this way, frames close to the best positions will be assigned a
higher weigtht, while selecting frames too far away, or too close
will be penalized. The final sum of probabilities for the testing seg-
ment is the maximum of S(t1, t2, ..., tN ) thoughout all possible tj

combinations.
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3. Experiments
Evaluation corpus

standard TIMIT acoustic/phonetic database is used to evalu-
the performance of the single selection approaches. All “sa”
ences are excluded from the training and recognition because
skew the phoneme occurrences, leaving 3696 sentences for
ing and 1344 for test. We adopt the same phoneme set and
same evaluation methods as described in [8]. Thus, there are
16 testing phoneme segments not counting silence segments.
upper bound of the 95% confidence interval is±0.49%.

Speech processing

9-dimensional feature vector, consisting of 12th-order mel cep-
plus energy, their velocity and acceleration coefficients, is ex-
ted for each 30ms speech frame. The frame shifts for the train-
set and the testing set are 10ms and 2ms respectively. The stan-
topology of the HMM is used: a 3-state left-to-right context-
pendent HMM model with 16 diagonal-covariance gaussian
tures per state is trained for each phoneme by the ESAT con-
ous speech recognizer. Due to the idea that one selected frame
esents one state, with this topology, three frames are required
e selected from each phoneme segment. The phoneme bound-
s in the testing set are achieved by a forced alignment proce-
using the accompanied transcripts and the phoneme HMMs.

Baseline: the conventional Viterbi decoder

start by the standard phoneme classification approach. The ac-
cy of the common phoneme classification can be experimented
the phoneme HMMs, the Viterbi decoder and the testing fea-
vectors after down-sampling to the 10ms frame rate. Without
frame selection, the recognition rate is 73.98%. Comparing to
result we presented in [1], we conclude that the forced align-
t gives more accurate phoneme boundaries than manual ones,
ough two phoneme sets involved are also slightly different.

SEL1: ML-based single selection

first focus on the simple ML-based single selection, SEL1.
we described in section 2.1, given the boundaries of a testing
ent, for a possible phoneme class, three frames whose likeli-
ds are maximal against corresponding state models are respon-
e for the final decision. In our experiment, using the SEL1 we
in 63.30% accuracy for the phoneme classification task.
s worsened result is understandable. A certain part of a test-
segment can be more likely to an incorrect phoneme than its
nd truth. Since all competing HMMs have the freedom to
ct the most likely frames, the incorrect model tends to select
es all from that part, and thus the sum of their likelihoods is
e competitive.

SEL2: fixed positions based single selection

optimal positions for the SEL2 can be learned from the train-
set through comparing different combinations of possible po-
ns. The optimal series of positions will be further used in the
3.

1. Learning optimal fixed positions

roughly searching for an optimal combination of fixed posi-
s in the training set is really computationally heavy and can
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Figure 1: The accuracies of phoneme classification in the training
set when frames are selected at the fixed positions. The middle
frame is extracted from 50%.

leard to over-training. Alternatively, we restrict the possibly se-
lected frames to some candidate percentages to search for a quasi-
optimal solution. In the experiment, the first frame for a phoneme
segment can only be selected from a few pre-defined percentages,
say, 0%, 10%, 20% and 30%; the candidate positions for the sec-
ond and third selected frame are also restrained from 10% to 90%
and from 70% to 100% with 10% as a step respectively. 0% in-
dicates the beginning frame of a phoneme segment, while 100%
is the end. Concerning the rule of time order, there are 96 possi-
ble combinations. To visually plot the results, Fig. 1 shows curves
of the phoneme classification accuracies with different combina-
tions of the arbitrary selections for the first and the third frames
when the middle frame is fixedly selected from 50%. We do not
present the recognition rates with other positions of the middle
frame since their trends are similar to the curves in Fig. 1 and 50%
for the middle frame is the best choice among its competitors. As
can be seen, the best combination of the first and third selected
frames does not appear either at phoneme boundaries, or at posi-
tions close to phoneme centers; the percentages for the most dis-
criminative frames are 10% and 90%. Although this selection is
not optimal over the whole phoneme segments, we still may con-
clude that frames at boundaries or close to the steady part are not
the most representative ones. This experiment confirms the nec-
essarity of a moderate span between selected frames. Some SEL2
results on the testing set are shown in Tab. 1.

3.5.2. Learning positions for maximum likelihood probability

Additionally we also can learn the most possible range where max-
imum likelihood appears from the training set. The likelihoods of
all frames in a phoneme segment are sorted in ascending order and
the ranks are normalized by the length of the segment. The av-
erage ranks at different percentages for different state models are
shown in Fig. 2, which illustrates the highest likelihood for the first
state normally shows up at around 10%, around 50% for the mid-
dle state and about 90% for the last state.
The position where the maximal likelihood appears is quite con-
sistent with the quasi-optimal fixed position (section 3.5.1). This
indicates that the best combination of selected frames may come
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re 2: The average rank for likelihood probabilities with differ-
percentages of phoneme segments

somewhere around 10%, 50% and 90%. Frames close to
hold a moderate span and probably reasonable likelihoods,
ch satisfy our demand for the SEL3.

SEL3: ML-based single selection with a span factor

we have shown in section 3.4, automatically selecting the most
riminative frames is not only relying on their likelihood prob-
ities, but also depending on their relative distances and their
itions in a phoneme segment. Benefiting from the results
ection 3.5, we learn that the best selected frames probably
at around 10%, 50% and 90% of a phoneme segment. The
ct positions should be decided by likelihood of their neigh-
ng frames. Thus, we set the optimal fixed positions cj to
(10%, 50%, 90%), thereby dj = (10%, 40%, 40%) in Eq. 4
the SEL3. In our experiment, the parameter k is set to 1. The
lts for the different single selection approaches on the testing
as well as the baseline are summarized in Tab. 1. We observe
the accuracy of SEL3 is further boosted from SEL2, which
ws the efficiency of the combination of frame spans and like-
od probabilities. We also notice that the accuracy of SEL3 is
ed comparable with the baseline, while the number of frames
by the SEL3 is much less than by the baseline in the decision
ess.

le 1: The comparison for the different single selection methods
he testing set

Baseline: HMM with 10ms frame rate 73.98%
SEL1: purely ML based 63.30%
SEL2: 0%-50%-100% 70.43%
SEL2: 10%-50%-90% 73.08%
SEL2: 20%-50%-80% 71.17%

SEL3 73.67%

Global spectral movement in selected frames

hree-frame combination selected by the SEL3 after discard-
most frames shows comparable performance to the traditional
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Figure 3: The comparison of GMM, SV GMM and SV GMM LDA
with different numbers of parameters in a phoneme model

Table 2: The phoneme classification rates for HMM, SV GMM
and SV LDA GMM with different degrees of freedom. nP: total
number of parameters; nS: number of states for a phoneme model;
ngps: number of gaussian per state; nD: number of parameters for
a gaussian
Appr. nP in a model HMM SV GMM SV LDA GMM
= nS×ngps×nD (3 states) (1 state) (1 state)

237 58.52% 61.75% 63.93%
474 62.86% 64.19% 66.04%
948 67.09% 66.44% 67.72%
1896 70.27% 69.25% 68.80%
3792 73.98% 71.30% 69.08%

HMM. Another interesting experiment is to investigate the global
characteristics of the three frames and the evolution of their spec-
tra. For this purpose, the three frames are concatenated to compose
a 117-dimensional super vector for each phoneme segment in both
the training set and testing set. For each phoneme, a gaussian mix-
ture model (GMM) with a diagonal covariance, like a one-state
HMM, is used to model super vectors in the training set. For eval-
uation, a super vector is classified to a phoneme whose GMM ob-
tains the maximal probability. We denote this implementation as
SV GMM. Obviously a weakness of this model is that there is a
strong correlation between corresponding cepstral coefficients in
different frames. While it is hard to estimate a full covariance
matrix for each phoneme GMM due to the high dimension, espe-
cially for some infrequent phonemes, the linear discriminant anal-
ysis (LDA) technique is adopted to reduce the correlations. An
LDA matrix is estimated from the pool of training super vectors,
by which each super vector is transformed to a 39-dimensional
vector. Afterward, phoneme GMMs, denoted as SV LDA GMM,
are trained using the transformed vectors.
Recognition rates for the traditional HMM, SV GMM and
SV LDA GMM are presented as a function of the number of free
parameters in Tab. 2 and Fig. 3. We can see that in low model com-
plexities, both the SV GMM and the SV LDA GMM surprisingly
beat HMM significantly, although in large number of parameters,
the HMM outperforms the SV GMM and the SV LDA GMM. Note
that the average number of frames for a phoneme segment is ap-
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imately eight, which means after frame selection, only 3/8
ber of frames are used to train SV GMM and SV LDA GMM
els. With the limited training data, the selected frames could
e precisely model the global evolution of phoneme variations
show better distinctions. When the number of parameters in-
ses, this advantage is counteracted by lack of sufficient train-
data. Comparing the SV GMM and the SV LDA GMM them-
es, the LDA transformation indeed reduce the correlations and
her enhance model’s validity in low complexities.

4. Conclusions
single selection can be seen as an attempt to automatically
ide the reliability of a frame. Frames at different positions
y different information. Some of them help to increase the
rimination among phonemes, while some might be useless, or
obscure the difference. The experiments in this paper have
wn that the most representative frame for a state does not only
on its likelihood probability but also depends on its position
he phoneme segment. With three selected frames in the
ision process, we still achieve fair performance comparable to
traditional HMM. Furthermore, the phoneme models trained
selected frames are not affected by vague, or less informative
es, thus they are more distinctive with moderate number of
meters.
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