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Abstract
Missing Data Techniques have already shown their effectiveness
in dealing with additive noise in automatic speech recognition sys-
tems. For real-life deployments, a compensation for linear filte-
ring distortions is also required. Channel compensation in speech
recognition typically involves estimating an additive shift in the
log-spectral or cepstral domain. This paper explores a maximum
likelihood technique to estimate this model offset while some data
are missing. Recognition experiments on the Aurora2 recognition
task demonstrate the effectiveness of this technique. In particu-
lar, we show that our method is more accurate than previously
published methods and can handle narrow-band data.
Index Terms: speech recognition, missing data techniques, con-
volutional distortion, channel estimation.

1. Introduction
The presence of both additive noise and channel variations results
in a decrease in performance of Automatic Speech Recognition
(ASR) systems due to the mismatch between the statistics of the
resulting input speech and its model, which is often derived under
different conditions. In ASR based on Missing Data Techniques
(MDT), handling the additive noise involves the estimation of a
missing data mask that indicates which spectro-temporal features
of the noisy speech are unreliable (missing) or reliable. The latter
are treated as clean speech data in the acoustic models of the re-
cognizer’s back end. The missing features on the other hand are
either marginalized or their value is estimated from the reliable
data using the Hidden Markov Model’s (HMM) state distribution
as a prior (data imputation), see [1]. In the present paper, the data
imputation method will be applied.

Channel variations, or convolutional noise, are due to the dif-
ferences in transmission channels caused by the changes of the dis-
tance between mouth and microphone, of the microphone charac-
teristics or of the recording environment. These differences cause
a model mismatch between the training and testing conditions. If
this mismatch can be described by a linear system with a short im-
pulse response (or smooth transfer function), the mismatch can be
modelled by a translation in the cepstral domain. The conventional
compensation strategy in ASR is to subtract the cepstral mean from
the data, making it insensitive to offsets. Since cepstra and log-
spectra are related by a linear transform, this removal of the mean
can also be performed on log-spectral features. However, when
some log-spectral features are not attributed to speech, but to a
different source, as is done in MDT, simple averaging will create
an important bias. A method that is compatible with missing data
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already been proposed in [2], in which the spectral features are
alized by a factor computed only from the most intense re-

s of the speech. In the current paper, we present an alternative
nique for estimating the channel by a Maximum-Likelihood
mation (MLE)-based algorithm that updates the initial chan-
stimate by maximizing the log-likelihood of the optimal state
ence of the observation data.

The outline of this paper is as follows. In section 2 we briefly
te the missing data approach. Section 3 presents a detailed
ription of the MLE algorithm to compensate for the convo-
nal noise. An evaluation of the performance of the resulting
nique on the Aurora2 connected digit recognition task and the
ined recognition accuracy, can be found in section 4. Conclu-
s are given in section 5.

Maximum likelihood-based imputation in
a MDT framework

speech recognizer is assumed to have a mainstream HMM-
d architecture with Gaussian mixture models (GMM). In the
t-end, a low resolution MEL-spectral representation is com-
d by a filter bank with D channels through windowing, fra-
g, FFT and filter bank integration. At frame t, the output of
lter bank with center frequency f will be denoted by |Yt(f)|,

f)| and |Nt(f)| for the noisy speech, clean speech and noise
ectively. The log-MEL-spectral noisy features y are then ob-
ed by stacking log(|Yt(f)|) for all filter banks in a vector, and

ise for s and n. In missing data theory, the following as-
ption is made for the noisy speech:

y ≈ max(s, n), (1)

re the max-operator works element-wise over the MEL-
tral components. The missing data detector generates a spec-
mask that indicates for all t which of the components of y are
ble (|St(f)| ≥ |Nt(f)|) or unreliable (|St(f)| < |Nt(f)|). In
way, the noisy data vector y is partitioned into a reliable and
nreliable part, (yr, yu). The reliable part of s is estimated as
In the maximum likelihood per Gaussian-based imputation,

missing part of s is estimated by minimizing the (negative)
likelihood for each Gaussian mixture component over s:

1

2
(s − μ)′P (s − μ) (2)

ject to the equality and inequality constraints:

sr = yr and su ≤ yu (3)

re μ is the mean of s and P is an inverse covariance or pre-
n matrix. μ and P are both estimated on clean training data.
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In most MDT systems, GMMs with diagonal covariance in the
log-spectral domain are used, resulting in a diagonal structure for
P and a tractable MLE for s. Higher accuracies are obtained with
GMMs with a diagonal covariance in the cepstral domain, in which
case P becomes non-diagonal. Imputation then becomes compu-
tationally more complex [3]. In this paper, the PROSPECT fea-
tures defined in [4] will be used, resulting in a known expression
for P , such that the computational load is reduced while maintain-
ing the accuracy. Despite their performance differences, all these
variants of MDT have a known symmetric positive-definite preci-
sion matrix P . Therefore, the channel compensation method that
is proposed in the next section will be generally valid.

3. MDT with channel compensation
3.1. Effect of the convolutional noise

So far, we have only considered the presence of additive noise.
In this paper we introduce an extension to the MDT paradigm to
remove the convolutional channel distortions as well. In the log-
spectral domain, the relationship between the distorted speech vec-
tor y, the additive noise n, the channel h and the clean speech s,
is given by:

y ≈ log
`
exp(s + h) + exp(n)

´
(4)

From (4) it is clear that a GMM for s that was trained on undis-
torted data, can be matched to the distorted data by adding a time-
independent shift h to the clean speech means. In the next section,
we will derive an expression for this channel shift.

3.2. Channel estimation

The unknown channel parameters are estimated by maximizing the
log-likelihood of the optimal state sequence of an observation se-
quence with length T . This T is chosen dynamically to ensure that
we have collected a sufficient amount of speech data. In on-line
applications, channel re-estimation is also postponed until the op-
timal state sequence over T becomes independent of the state in
the Viterbi. In this way the optimal state sequence contains a suf-
ficiently large number of Gaussians representative for a diverse set
of phonemes, a condition which is fulfilled after the recognition
of at least three or four digits in the experiments on the Aurora2
database reported below.

If for a given observation sequence Y = {y1, y2, . . . , yT },

the optimal state sequence Q̂ of the Viterbi decoder is

Q̂ = arg max
Q

P (Q|Y ) = {q1, q2, . . . , qT } (5)

and if the likelihood of the i-the mixture component of state q with
weight wi,q is given by:

ξi,q ∼
exp

“
− 1

2
(si,q − μi,q − h)′P i,q(si,q − μi,q − h)

”
p

det(P i,q)
(6)

then the log-likelihood of Q̂ is (omitting constant terms):

TX
t=1

log
` GX

i=1

wi,qtξi,qt

´ ≈
TX

t=1

log
`
wit,qtξit,qt

´
(7)

where it is the mixture index of the dominant Gaussian of the
mixture of state qt. Since we now consider only one Gaussian
at each time t, we will use the index t in Gaussian variables to
indicate the Gaussian (it, qt). The MLE of the channel h can

then
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be obtained by maximizing (7) over h while evaluating each
ssian t in its optimal point ŝt according to (2). This is equi-
nt to the minimization of the cost function L in the points
{ŝ1, ŝ2, . . . , ŝT }:

|ŝ=
TX

t=1

1

2
(ŝt − μt − h)′P t(ŝt − μt − h) =

TX
t=1

Lt |ŝt

(8)
e that ŝt is a function of h and that L |ŝ depends on the se-
ce of dominant Gaussians: {(i1, q1), (i2, q2), . . . , (iT , qT )}.

ce, iterative optimization is required. Using the Newton-

hson method, the estimate for the channel ĥ can be found as:

ĥ = h −
h
∇2L |ŝ

i−1

·
h
∇L |ŝ

i

= h −
h TX

t=1

∇2Lt |ŝt

i−1

·
h TX

t=1

∇Lt |ŝt

i
(9)

channel update should be applied recursively until conver-
e, which would imply several recognition passes. Fortunately,
riments (not reported below) have shown that an update stra-
with one iteration per T frames suffices. In the next sub-

ions we try to derive an expression for the gradient (∇) and
sian (∇2) of L to h.

1. Derivation of ∇L |ŝ
gradient of Lt to h is:

∇Lt |ŝt=
∂Lt

∂h
|ŝt +

“∂st

∂h
|ŝt

”′ ∂Lt

∂st
|ŝt (10)

gt =
∂Lt

∂h
|ŝt=

∂Lt

∂st
|ŝt= P t(ŝt − μt − h) (11)

section 2 we know that ŝt is chosen such that it minimizes
subject to (3). While optimizing ŝt, some of the inequality
traints of (3) will be active, i.e. the feasible ŝt that minimizes
ies on that boundary; others will be inactive. Active inequality
traints therefore become equality constraints. Each equality
traint defines a hyperplane (a D-1−dimensional space) de-
ed by its normal ai. Geometrically, ŝt is the point on the

rsection of all hyperplanes that minimizes L. Hence, gt must
erpendicular to all these hyperplanes, for if it would have a

zero projection in any plane, ŝt would not minimize L sub-
to the constraints. Therefore, gt ∈ Span(At) where At =
a2, . . . , aMt ] (Mt is Gaussian dependent) or A⊥′

t gt = 0
A⊥

t the matrix perpendicular to At. To find an expression
st/∂h evaluated in the point ŝt, assume that h changes with

, then ŝt changes with Δŝt and gt with Δgt such that with eq.

A⊥′
t Δgt = A⊥′

t P t(Δŝt − Δh) = 0 (12)

also know that ŝt has to move in the constraint hyperplane or
ŝt = 0. Hence, there must exist a vector xt which satisfies

Δŝt = A⊥
t xt (13)

r substitution of (13) in (12), we get

xt =
`
A⊥′

t P tA
⊥
t

´−1
A⊥′

t P tΔh (14)

∂st

∂h
|ŝt= lim

Δh→0

Δŝt

Δh
= A⊥

t

`
A⊥′

t P tA
⊥
t

´−1
A⊥′

t P t (15)



This yields:

∇Lt = −
“
P t −P tA

⊥
t

“
A⊥′

t P tA
⊥
t

”−1

A⊥′
t P t

”
(st −μt −h)

(16)
and since A⊥′

t gt = 0,

∇Lt |ŝt= −P t(ŝt − μt − h) = −gt (17)

This result can also intuitively be interpreted as follows: make a
perturbation of hi (the i-th component of h), then ŝt must change
such that it remains in the hyperplane, hence ∂ŝt/∂hi lies in all
hyperplanes while we know that gt is perpendicular to these hy-
perplanes. Hence, the last term in eq.(10) must be zero. Finally
the expression for ∇L |ŝt is given by:

∇L |ŝ= −
TX

t=1

gt (18)

3.2.2. Derivation of ∇2L |ŝ
The Hessian of Lt to h is:

∇2Lt |ŝt=
∂∇Lt

∂h
|ŝt +

“∂st

∂h
|ŝt

”′ ∂∇Lt

∂st
|ŝt

= P t − P tA
⊥
t

`
A⊥′

t P tA
⊥
t

´−1
A⊥′

t P t (19)

Remark that ∇2Lt is positive semi-definite and ‖∇2Lt‖ ≤ ‖P t‖.
Since we know that P t is symmetric and positive semi-definite,

we can write P t = P
1/2
t

`
P

1/2
t

´′
and by making use of the QR-

decomposition: `
P

1/2
t

´′ · ˆ
A⊥

t At

˜
= QtRt

=
ˆ
Qt,1 Qt,2

˜ ·
»

Rt,1 M
0 Rt,2

–
(20)

then eq.(19) can be written as (proof omitted):

∇2Lt |ŝt= P
1/2
t Qt,2Q

′
t,2

`
P

1/2
t

´′
= AtR

′
t,2Rt,2A

′
t (21)

Hence, the expression for the Hessian is given by:

∇2L |ŝ=
TX

t=1

AtR
′
t,2Rt,2A

′
t (22)

The conditions for T that we have formulated at the beginning of
this section also assure the non-singularity of the Hessian matrix
in practice.

4. Experiments
4.1. Corpora, MD recognizer and mask estimation

To evaluate the proposed MLE-based channel compensation tech-
nique, we use the Aurora2 TI-Digits speech database, test set A.
Since test set A has the same channel characteristics that are used
in the training conditions, this test set is regarded as non-distorted
(channel 0). Therefore, we have created five additional test con-
ditions. Firstly, the clean speech samples are convolved with the
impulse responses of highly distorted channels. The frequency re-
sponse of these channels are shown in figure 1. Note that channels
4 and 5 are low-pass filters in order to investigate how the system
will perform on band-limited data. Subsequently, the four noise
types of test set A are added to the filtered clean speech after sca-
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re 1: Frequency responses of the channels used in our experi-
ts.

to the requested SNR (for channels 4 and 5 we have neglected
scaling). The sampling rate is 8kHz. Notice that test set C of
Aurora2 database shows less severe channel mismatch, e.g. it

not contain narrowband speech.

The details of the MDT recognizer are described in [5]. In a
hell, the 23-channel MEL filter bank spectra are transformed
he PROSPECT domain, where they are modelled with 16
M states per digit and 20 Gaussians with diagonal covariance
state.

The static missing data are imputed based on two types of
ks: oracle masks that are derived by comparing the log-spectra
e filtered clean speech and additive noise; real masks that are
ated from noisy test set data using harmonicity and SNR in-
ation [5]. As motivated in [5], the oracle (real) masks for the

amic features are derived by applying a delta operator to the
le (real) masks for the static features.

Spectral normalization

MLE-based channel compensation technique is tested against
ectral normalization method based on the ideas of [2]. The
tral features of each MEL-frequency band are normalized by
mean of the N largest features marked as reliable in that
uency band. The normalization factor for the j-the MEL-
uency band is computed as

η(j) =
1

N

X
i∈Γ(j)

yr(i, j) (23)

re Γ(j) is a set containing the indices of the L largest values
e reliable spectro-temporal cells yr(i, j). The value for N is
rally chosen as N = I/E with I the number of frames for
tterance and E is an experimentally derived parameter (here

5). If this value for N is less than the number of reliable
, N is set to the number of reliable cells exactly. If no reliable
res are available in a frequency band j, no normalization is

e, hence η(j) is set to 1. Variants were η is computed from
largest spectro-temporal cells or where the reliable cells are

nded with unreliable cells to achieve N data cells for each
uency band, did not result in significant changes in recognition
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accuracy. No performance improvements were made when like in
cepstral mean subtraction the normalization factor was computed
as a geometrical mean.

4.3. Experimental results

Reference results are obtained by applying MDT without chan-
nel compensation to the same test set. The mean accuracy over
the four noise types of test set A for the channels 0-3 are shown
in table 1. These results indicate that the performance increases
significantly when a channel compensation method is integrated
in a missing data recognition system. Furthermore, table 1 shows
that the results of our MLE-based compensation algorithm is su-
perior to those of the spectral normalization method of [2]. The
differences in performance between the two methods are most no-
ticeable in the worst distortion conditions (channel 1 and 3) and at
low SNRs. Also note that the accuracy for the low distortion cases
(channel 0 and 2) sometimes has been worsened with the spectral
normalization method, a problem that also has been reported in
[2]. From the results of table 1 it is clear that this is not the case
for the MLE-based channel compensation method.

The recognition accuracy for the test sets with channels 4 and
5 are shown in table 2. Remark that MDT without compensa-
tion has a relatively good performance for these channels. This
indicates that the channel is already partially compensated by the
imputation of the missing part. However, further increase of the
performance is obtained by the extension of the MDT with the
MLE-based compensation method.

5. Conclusions
We have presented a new channel compensation method for MDT-
based recognizers, where the MLE of the channel is computed
from the optimal state sequence of the observation data. For rea-
sons of computational efficiency, we have chosen to work in the
PROSPECT domain, but similar results should be obtained if the
features are expressed in the cepstral or (log-)spectral domain.
Recognition experiments showed the effectiveness of our channel
estimation method and that it outperforms the spectral normaliza-
tion technique. Future work will include the application of our
technique to large vocabulary continuous speech recognition.
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Oracle masks

NR No comp. Spec. Norm MLE

B) ch4 ch5 ch4 ch5 ch4 ch5

dB 95.03 89.93 94.59 90.70 98.46 97.75

dB 94.99 90.84 93.88 90.37 97.98 96.91

dB 94.23 89.97 92.48 89.30 96.50 94.91

dB 90.06 85.29 89.02 85.98 92.30 89.95

vg. 93.57 89.01 92.49 89.08 96.31 94.88

Real masks

NR No comp. Spec. Norm MLE

B) ch4 ch5 ch4 ch5 ch4 ch5

dB 91.40 84.82 96.33 94.51 97.88 96.63

dB 90.28 84.71 94.00 91.57 95.57 93.76

dB 86.58 81.65 88.46 85.27 90.91 88.44

dB 75.08 69.03 74.08 69.73 78.60 74.19

vg. 85.83 80.05 88.22 85.27 90.74 88.26

le 2: Average recognition accuracy over the four noise types of
set A for the filtering characteristics of channels 4-5.
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Oracle masks

SNR No comp. Spectral Normalisation MLE-based compensation

(dB) ch0 ch1 ch2 ch3 ch0 ch1 ch2 ch3 ch0 ch1 ch2 ch3

20 dB 98.86 95.25 93.57 92.69 97.57 95.60 97.42 97.19 99.10 98.51 99.01 99.13

15 dB 98.74 91.64 95.27 90.47 97.33 93.59 97.35 96.49 99.10 96.89 99.03 98.89

10 dB 98.13 84.08 96.10 86.26 96.69 89.09 97.22 94.59 98.52 93.28 98.95 98.04

5 dB 95.61 68.85 94.39 77.19 94.38 79.87 96.11 89.74 96.25 84.41 97.89 94.46

Avg. 97.83 84.96 94.83 86.65 96.49 89.54 97.02 94.50 98.24 93.27 98.72 97.63

Real masks

SNR No comp. Spectral Normalisation MLE-based compensation

(dB) ch0 ch1 ch2 ch3 ch0 ch1 ch2 ch3 ch0 ch1 ch2 ch3

20 dB 98.69 86.78 97.82 86.08 97.67 93.65 94.50 90.93 98.81 96.43 98.85 98.28

15 dB 97.44 78.24 96.46 78.58 96.37 88.86 92.45 88.80 97.90 91.88 97.91 95.82

10 dB 93.95 64.32 92.29 66.72 92.72 79.46 87.00 81.63 94.77 81.74 94.69 87.97

5 dB 83.44 44.44 80.90 51.01 80.27 59.13 73.96 61.96 84.25 62.20 84.81 69.17

Avg. 93.38 68.44 91.86 70.60 91.76 80.28 86.97 80.83 93.93 83.06 94.06 87.81

Table 1: Average recognition accuracy over the four noise types of Aurora2 test set A for MDT without channel compensation, MDT with
spectral normalisation and MLE-based channel compensation; test cases are the filtering characteristics of channels 0-3.
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