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Abstract
We propose a new algorithm for voiced/unvoiced classification of
speech on a phoneme or sample level. The algorithm is inspired
by auditory based approaches and combines two cues. One cue is
based on the energy distribution of the signal and the other on the
harmonicity. In order to extract the harmonicity of the signal we
calculate a histogram of the zero crossings of the filter channels
after applying a Gammatone filterbank to the signal. A measure
similar to the variance of the zero crossings yields the harmonicity
cue. The performance of the algorithm was measured on several
minutes of read and spontaneous speech with various speakers.
An algorithm proposed by Mustafa et al. [1] served as benchmark.
The results show that our algorithm performs significantly better
as well on read as on spontaneous speech and seems in particular
be better able to to cope with different speaking styles.
Index Terms: speech analysis, voiced/unvoiced detection, speak-
ing style, zero crossings.

1. Introduction
Speech recognition systems that are available today are based on
statistical methods (mostly Hidden-Markov-Models) and perform
well in situations characterized by stationarity and low-noise con-
ditions. When the distance between the speaker and the micro-
phone gets larger and the noise level increases these systems show
dramatic performance drops. Motivated by the fact that humans
perform extremely well in such situations we want to incorporate
additional features in the recognition process known to be of im-
portance for humans. One such feature is the voicing state or the
Voice Onset Time (VOT) of a speech segment. Especially measur-
ing the VOT demands for a chronologically very precise determi-
nation of the voicing state.

A crucial step in the voicing detection is the selection of the
appropriate features. A variety of features has been discussed in
the literature [2, 3, 4, 5, 1, 6, 7]. These features rely mainly on two
properties of speech segments. Firstly, energy in voiced speech
as vowels and consonants, except for plosives, is highly concen-
trated in the fundamental frequency and its harmonics. Hence the
ratio between the energy in the low frequencies to the energy in
the high frequencies can be used as an indication on the voicing
state of the segment. Secondly, voiced sounds show a harmonic
structure whereas unvoiced sounds have a more noise-like distri-
bution of energy across the frequency spectrum. In principle the
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re based on the harmonicity of the signal would be sufficient
ecide upon the voicing state, but it is very often difficult to
s and prone to errors. Therefore, a combination with an en-
based criterion is beneficial.

In the following we will first introduce the features we use and
il how we combine them. Then we will compare our results to
te of the art voiced/unvoiced detection system. This compar-
is performed on several minutes of read as well spontaneous
ch. After reporting the results of this comparison we close
some concluding remarks.

2. Voicing Detection
our algorithm we take inspiration from the human auditory
em. Consequently, we model some of its properties as for ex-
le the preprocessing via a Gammatone filterbank, known to
similar properties as the human cochlea [8]. The filterbank

use has 128 channels ranging from 80 Hz to 5 kHz and fol-
the implementation given in [9]. In account of the previously

tioned reasons we use a combination of a harmonicity and an
gy based feature for the voicing detection.

The α-ratio

α-ratio sets the energy in different frequency bands into rela-
. It can be defined as

α =

∞

fhigh
E(f) df

flow

0
E(f) df

, (1)

re fhigh, flow denote thresholds for the limits of the consid-
frequency bands. Usually, the α-ratio is calculated with

whole frequency spectrum under consideration, meaning that
h = flow = fthresh, resulting in only one threshold value
is in most cases set around 1 kHz in order to make sure that

main energy of voiced speech is contained in that lower fre-
cy band. As unvoiced speech always has its maximum energy
gh frequencies, the α-ratio can be used to differentiate voiced

unvoiced speech. To take into account that vowels some-
s have considerable energy at 1 − 2 kHz we use a threshold
low = 1 kHz for the low frequencies and fhigh = 3 kHz for
high frequencies. In Fig. 1 the α-ratio is visualized for a test
ence. The phonetic labels are given in the SAMPA notation
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Figure 1: Spectrum (upper plot) and values of α (lower plot) with
fhigh = 3 kHz for the question ”An welchen Tagen hätten Sie
Zeit?” (an+vElC@n+t-h’a:gnhEtn+zi:+ts’aIt-h).

[10]. Naturally, the values depend heavily on the exact threshold
setting, especially the value of fhigh. The lower fhigh is set, the
more likely it is to include energy in the upper frequency band
which stems not from noise-like excitation but from some higher
harmonics of a voiced utterance. Likewise when setting fhigh to
a high value unvoiced phonemes with most of the energy concen-
trated in the mid-range frequency band can not be distinguished
from voiced consonants by their α-ratio anymore. We have cho-
sen fhigh = 3 kHz for our experiments.

2.2. Zero Crossing Distance Histogram

The second, harmonicity based cue evaluates the histogram of the
Zero Crossing Distances (ZCDs) of the filter signals resulting from
the Gammatone filterbank. When signals stem from the same fun-
damental frequency, they have zero crossings in common. How
many zero crossings they share depends directly on their harmonic
order relative to the fundamental frequency. For example the first
order harmonic shares each second zero crossing with the funda-
mental. Hence the distance between two zero crossings of the fun-
damental occurs again as the distance between three zero crossings
of the first harmonic and so forth. We want to refer to these dis-
tances between multiple zero crossings as higher order zero cross-
ing distances. Not the absolute occurrence of the zero crossings
but only their distances can be used due to the frequency and
articulation dependent phase delay introduced by the vocal tract.
The distance of the fundamental reoccurs in the higher order dis-
tances of the harmonics and hence a histogram over all distances
shows peaks at the distance value of the fundamental. The en-
ergy of the filter signals is represented in the ZCD histogram by
weighting the values with the energy of the corresponding chan-
nel. This means distance values stemming from a segment with
high energy have more weight in the histogram (see [11] for more
details). To enhance signal parts with low energy the histogram
values are normalized to the maximum at each sample (compare
Fig. 2). Unvoiced regions can be identified as regions with en-
ergy spread wide across the whole histogram. The pitch contour is
clearly visible as it only appears in regions with almost no energy
scattering.
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re 2: Example of a ZCD histogram for the question ”An
hen Tagen hätten Sie Zeit?”. The fundamental frequency is
cted as a narrow pitch contour where the signal has high en-
.

Weighted zero crossing distance spread

harmonicity of the signal segment can now be measured via
distribution in the ZCD histogram. If a sample is part of a
odically excited speech sound, this will be represented by a
ow line in the histogram since almost all energy is contained
e fundamental frequency and its harmonics. In most cases
e harmonic relation of the energy distribution is absent, the
ple possesses a distribution where the overall energy is spread
ss the whole histogram. The contour of this spread represents
distribution function of occurring zero crossing distances and
d be interpreted as a probability density function (pdf) for the
rrence of these ZCDs. As we don’t have access to the true
s but only to estimates based on training data we want to refer
ese measured distributions p̂(z) as empirical density functions
’s).
While analyzing the data with respect to their representation
e normalized ZCD histogram, we found that low energy seg-
ts in the histogram do not contain information that is specific
e voicing decision. We therefore neglect those segments by

ring the histogram via substituting the energy weight factor
, t) for each channel z at time t with

E′(z, t) =
E(z, t) if E(z, t) ≥ 0.5Emax(t),

0 otherwise .
(2)

Following the interpretation of the histogram as empirical dis-
tion functions of ZCDs, this filtering operation is a nonlinear

sformation of the edf. The output of this filtering operation can
een in Figure 3.
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Figure 3: Filtered ZCD histogram

Based on this filter output, one can calculate a measure of con-
ration. The feature we finally extract out of the filtered his-
am is defined as



σ2
CoG =

ZCDmax

ZCDmin

p̂(z)E′(z)(z − μ)2 dz

ZCDmax

ZCDmin

p̂(z)E′(z) dz

(3)

where μ is the first moment of the transformed edf such that

μ =

ZCDmax

ZCDmin

p̂(z)E′(z)z dz

ZCDmax

ZCDmin

p̂(z)E′(z) dz

. (4)

In this respect σ2
ZCD is very similar to the variance of the ZCDs.

In Figure 4, the feature plot of σ2
ZCD is shown. The difference be-

tween voiced and unvoiced speech is clearly mapped into a mostly
disjunctive feature domain. Voiced speech that is excited periodi-
cally results in very low values of σ2

ZCD whereas unvoiced speech
shows feature values up to σ2

ZCD = 10000.
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Figure 4: Example of σ2
ZCD values for a speech signal .

For unvoiced speech which is not coarticulated and therefore
clearly does not contain a fundamental frequency, σ2

ZCD can be
small although there is no concentration of energy in single chan-
nels. This may happen if there is only activity in the very highest
frequencies of the spectrum which results in a very skew distri-
bution in the histogram. To avoid errors in these cases, we intro-
duce a small error-correction that checks for the largest peak width
Wmax(t) at the present sample. We define the widest peak as the
segment covering the greatest number of channels in the histogram
after it has been filtered according to Eq. (2).

Since a small σ2
ZCD has to correspond also to a narrow pitch

contour in voiced speech, this is not satisfied in the above de-
scribed cases. We therefore override the corresponding σ2

ZCD to
make sure the sample is not regarded as voiced. The threshold for
this correction was found empirically as a maximum peak width
of 10 channels, such that the error correction can be expressed as

σ′2
ZCD(t) =

σ2
ZCD(t), if Wmax(t) > 10

ξ otherwise
(5)

with ξ set to an artificial high value, e.g. ξ = 1000.

3. Feature Integration and Decision System
For the integration of the two cues we formulate the problem as a
multidimensional hypothesis test. The dimensions along which the
test operates are the two cues x(α(t), σ2

ZCD) and the hypotheses
Hi are voiced V or unvoiced UV . In order to do so we have to es-
timate the likelihood p(x|Hi). We use 34 seconds of spontaneous
speech using the phonetically labeled Kiel Corpus of Spontaneous
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ch [12] for this estimation. Likelihoods were estimated for a
and a female speaker but no significant difference was found.

decision upon voicing was done based on a rectangular deci-
region in the two dimensional feature domain Θ

RV = {(α, σ2′) ∈ Θ | α ≤ 0.5 ∧ σ2′ZCD ≤ 100}, (6)

UV = {(α, σ2′) /∈ RV } (7)

decision is made for individual samples and afterwards, a me-
filtering is applied with a sliding window of 10 ms.

4. Results
detection performance of the developed system was assessed

a large set of data from the Kiel Corpus of Read and Spon-
ous Speech. To measure the influence of speaking style and
ker variability on detection performance, we calculated statis-
for read and spontaneous speech separately.
For read speech, we used a set of 20 sentences that were spo-
by 6 different speakers (3 female, 3 male), resulting in a total
89 seconds of analyzed speech. Spontaneous speech was ana-
d by a set of 76 utterances from 4 speakers (2 female, 2 male),
a total of 287 seconds. The utterances were recorded while
peakers had to accomplish an appointment-making task. The
are phonetically transcribed and time aligned.

Since no explicit voicing label is available, we obtain the voic-
information by mapping the phonemes to a voicing status ac-
ing to their phonological classification. For plosives the la-
was split up into two parts, since they are produced with an
al closure of the glottis, followed by a noise burst. For tech-
l reasons the closure phase was assumed to be voiceless for
honemes, thus not taking into account that voiced plosives
voicing in the closure phase. Therefore, the first part of the

eme, corresponding to the closure phase, was labeled as si-
e and not included in the evaluation. The voicing of the second
of the plosive, the release and (for voiceless stops) aspiration
e, was then labeled according to phonology.
This allows us to automatically process and evaluate a larger
unt of data, but also has the drawback that this does not take
eme dependent VOTs and coarticulation into account. Since

voicing of speech will not always change with phoneme bor-
but will also depend on context, the mapping of phonemes to
ing is therefore not optimal.
This is especially true for spontaneous speech where pronun-
on is less careful. To include these contextual effects in the
l, we also labeled a set of spontaneous speech manually by the
ection of waveforms and spectra of the signals. This increases
recision and therefore the quality of the reference labels. The
f manually labeled speech contains 34 seconds of spontaneous
ch, recorded from one female and one male speaker who have
yet been included in the data set.
We compared the results we obtained to an algorithm devel-

by Mustafa et al. [1].

Algorithm of Mustafa et al.

algorithm is based on two features: the α-ratio and the auto-
elation. The α-ratio αStd used by Mustafa et al. uses only one
off frequency. Additionally a gender detector based on a pitch
ing is implemented. Via the use of the gender detector the

meters of the features, especially the cut-off frequency used
e calculation of the α-ratio, are adapted. The use of the auto-



correlation as a feature is motivated by the fact that voiced sounds
have a systematically higher autocorrelation than unvoiced sounds.
An additional hysteresis block avoids fast changes of the voicing
state due to measurement errors. Each of the two features decides
about the voicing independently. To obtain a final decision, these
decisions are then combined by the application of some rules, i.e.
the segment is regarded as voiced if the hysteresis block detects
voicing and the autocorrelation is above a minimal value.

4.2. Comparison

During the comparison we used for both algorithms the speech
data detailed above. The decision regions used in our algorithm
were set as given in the previous section and not changed during
the different tests. Since the algorithm proposed by Mustafa et. al.
sometimes fails to detect speech onsets, we do consider only those
speech signals in the statistic, where the tracking caused no errors,
i.e. it was able to detect at least 50% of the voiced samples. The
statistics in the following therefore reflect only differences in the
detection performance due to feature selection and combination,
not differences that occur due to tracking errors.

4.3. Read Speech

The results for the read speech part are shown in Tab. 1. The values

Total Vowels only Consonants only
Our algorithm 82.4 % 86.4 % 79.5 %
Mustafa et al. 71.5 % 81.3 % 64.4 %

Table 1: Correct classification rates for the read speech part, mea-
sured on phonological voicing labels.

are given in percent of samples labeled as speech correctly classi-
fied. As can be seen our algorithm clearly performs better overall
and especially for consonants.

4.4. Spontaneous Speech

For spontaneous speech we performed two tests. One where we
used the phonological voicing labels and one where we adjusted
the labels by hand. In Tab. 2 the detection rates for the phonolog-
ically labeled part are given. In this case again the differences be-

Total Vowels only Consonants only
Our algorithm 80.7 % 83.3 % 79.0 %
Mustafa et al. 60.8 % 61.7 % 60.3 %

Table 2: Correct classification rates for the spontaneous speech
part, measured on phonological voicing labels.

tween our algorithm and that of Mustafa et al. are even larger. Due
to the less precise articulation in spontaneous speech the detection
rates, especially for vowels, degrade. Finally we give the results
for the spontaneous speech part with manually adapted voicing la-
bels in Tab. 3. In this test the effects of the imprecise labeling are

Total Vowels only Consonants only
Our algorithm 86.3 % 89.2 % 84.0 %
Mustafa et al. 68.2 % 71.7 % 65.4 %

Table 3: Correct classification rates for the spontaneous speech
part, measured on manually obtained labels.

reduced and the performance of the algorithm can be better as-
sessed. For the manual set labels our algorithm performs best and
is again much better than that of Mustafa et al.
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5. Conclusion
developed an algorithm for voiced/unvoiced decision which
ates on the sample level. As features we use the energy dis-
tion and a measure based on the entropy of the zero crossing
nces of the signal after the application of a Gammatone filter-
. The comparison to a state of the art algorithm by Mustafa et
howed that our algorithm performs significantly better at less
putational costs (the calcuation of the autocorrelation and the
er detector in the algorithm of Mustafa et al. are computa-

ally quite demanding). The tests were performed for two dif-
nt databases, one with read speech and one with spontaneous
ch. From both databases we used a large set of utterances. We
d show that the voicing detection in vowels works better for
speech than for spontaneous speech. This is most likely due

oarticulation effects, especially the vowel length reduction in
taneous speech. We made an additional test on the sponta-
s speech corpus where the labels were adjusted by hand. The

ificant differences to the test on the purely phonetic labels il-
ates their drawbacks for such a task. They especially do not
ure coarticulation effects, which yield deviations between the
etic identity of a segment and its actual voicing state. On this
taneous speech set with manually set labels our algorithm ob-
d the best results with detection rates well above 80%.
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