
GMM-BASED ACOUSTIC MODELING FOR EM
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ABSTRACT

Speech recognition applications are known to require a significant
amount of resources (training data, memory, computing power).
However, the targeted context of this work - mobile phone embed-
ded speech recognition system - only authorizes few KB of memory,
few MIPS and usually small amount of training data.

In order to fit the resource constraints, an approach based
on a semi-continuous HMM system using a GMM-based state-
independent acoustic modeling is proposed in this paper. A trans-
formation is computed and applied to the global GMM in order to
obtain each of the HMM state-dependent probability density func-
tions. This strategy aims at storing only the transformation function
parameters for each state and authorizes to decrease the amount of
computing power needed for the likelihood computation.

The proposed approach is evaluated on two tasks: a digit recog-
nition task using the French corpus BDSON (which allows a Digit
Error Rate of 2.5%) and a voice command task using French corpus
VODIS (the Command Error Rate leads around 4.1%).

Index Terms: embedded speech recognition, acoustic modeling.

1. INTRODUCTION

The amount of services offered by the last generation of mo-
bile phones has significantly increased compared to regular mobile
phones. Nowadays, phones propose new kind of services like orga-
nizer, phone book, e-mail/fax, or games. During the same time, the
mobile phone size has been largely reduced. Both these evolutions
raise an important question: ”How could we use a mobile phone with
all its services without a large keyboard ?”. Voice based human-to-
computer interfaces supply a friendly solution to this problem but
require to embed a speech recognizer into the mobile phone.

Since the last decade, performance of Automatic Speech Recog-
nition (ASR) systems has been improved and nowadays authorizes to
build efficient vocal human-to-computer interfaces. Moreover, even
if scientific progresses could be noticed, the gain (in performance)
remains linked to the computer resource: a last generation computer
with a lot of memory is generally required. The main problem to
embed ASR in a mobile phone is the low level of resource available
in this context which classically consists of a 50/100 MHz processor,
a 50/100 MHz DSP, and less than 100KB of memory.

State-of-the-art speech recognition systems are mainly related
to statistical methods like Hidden Markov Model. For this kind of
systems, a large training data set is required in order to reach good
performance. The training data should be as close as possible to the
targeted application. For mobile phone embedded speech process-
ing, few speech corpora are available (moreover the main part of
collected speech material is not directly recorded in a mobile phone
which adds coding and transmission problems). In order to cope
with this problem, the acoustic models are generally trained using
large available corpora recorded in different conditions before be-
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dapted to the targeted context using the limited amount of data
able.

obile phone context involves a large environment variability
ients use their mobile phone in several locations (office, car,
t,...). In order to improve the speech robustness in these adverse
itions, large acoustic models (trained with enough data) and/or
stic-model adaptation are needed. Nevertheless, mobile phone
rce constraints emphasize the need of new solutions.

n this paper, we mainly focus on the memory constraints even
proposed solution allows a significant gain in terms of com-

ional cost and reduces the needs in training data. Our approach
ists in modeling the acoustic space by a unique GMM, which
rived for obtaining each HMM-state probability density func-
by applying a simple transformation (cf. figure 1). In this
xt, only the transformation parameters need to be stored for
en state. This approach also allows a gain in terms of computa-
power as a part of the likelihood computation is shared between
tates. Our approach, firstly proposed in [1], is technically close
e semi-continuous HMM [2], or to [3, 4], the main difference
erns the view and the training of the acoustic model: as a GMM
a HMM with tied components. Other approaches for embed-

classical HMM recognizers in mobile phone are also present in
terature, like in [5].
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Fig. 1. General schema of the proposed approach.

n section 2, we present the corpora used for the experiments.
, a baseline HMM system is presented in section 3. Section 4

ribes the proposed approach. Section 5 shows some experimen-
sults and finally, some conclusion and perspectives are provided
ction 6.

2. CORPORA

is paper, two databases are used to evaluate the proposed ap-
ch: BDSON and VODIS. A third database, BREF, is used only
he training of the state-independent GMM model. The data-
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bases are French corpora. BREF and BDSON are collected from
clean acoustic environments and VODIS is recorded in a more real-
istic environment (records are made into a car).

2.1. BREF

BREF [6] is a large read-speech corpus composed of sentences se-
lected from the French newspaper ”Le Monde”. This corpus contains
about 100 hours of speech material from 120 speakers.

This corpus is used to train the baseline HMM system and to
estimate the state-independent GMM (in both cases, the models are
trained using BREF and then adapted to BDSON as explained in the
next paragraph).

2.2. BDSON

BDSON [7] includes speech material (in French) recorded from 30
speakers (15 male and 15 female speakers).

BDSON was divided into two parts:

• one for the application-context adaptation (BADAPT SET):
it includes 700 digits pronounced by 7 speakers (4 male and 3
female speakers). This set is used to adapt the baseline HMM
and the state-independent GMM to the application context.
This phase is done once and the rest of the paper will refer to
these adapted models;

• one for testing (BTEST SET): composed of 2300 utterances
of digits pronounced by 23 speakers (11 male and 12 female
speakers).

The task targeted on this corpus is isolated word recognition,
embedded in a mobile phone. Due to the database, the performance
is evaluated thanks to a digit recognition task, where the digits are
considered as words (i.e. no specific adaptation of the system is
done, like reduction of the number of phoneme models). As the
vocabulary is composed of the ten French digits, the performance
measure is denoted in this paper Digit Error Rate (DER).

2.3. VODIS

VODIS [8] is a French corpus dedicated to car embedded applica-
tions. It includes recordings from 200 speakers. It contains a large
variety of data: letters, digits, vocal commands, spelled words...
Recordings are made with close-talk and far-talk microphones. The
acoustic environment varies for every recording session (three cars,
the window is opened or not, the radio is turned on or not, the AC
is turned on or not). The Speech/Noise Ratio (SNR), estimated with
the system presented in [9], is around 3.5dB1.

We use only the subset containing the voice commands, under
the close-talk condition. It was divided into two parts:

• one for the application context adaptation (VADAPT SET): it
includes 2712 commands pronounced by 39 speakers;

• one for testing (VTEST SET): composed of 11136 utterances
of commands pronounced by 160 speakers.

As we performed voice command recognition the evaluation
measure used is the Command Error Rate (CER).

The speakers of BADAPT SET and VADAPT SET are different
from the speakers of BTEST SET and VTEST SET (and are also
different from the BREF speakers).

1for comparison the SNR of French-corpus BREF ([6]) is around 15dB.
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3. BASELINE HMM SYSTEM

training process is composed of two successive stages. The
els are firstly trained using the BREF corpus. Then, the second

consists in adapting these models (weight, mean and variance)
DAPT SET2 using the MAP approach [10].
he models are composed of 38 phonemic models and 108 emit-

states (context-independent models). The number of Gaussian
onents per state is set to 128. 39 PLP coefficients per frame (13
and first and second derivative) are used. The complexity of
models is about 1 million parameters.
able 1 shows a DER about 0.96% when using the BDSON cor-
nd 1.80% with VODIS corpus.

e 1. Digit Error Rate (1(a)) and Command Error Rate (1(b)) for
line HMM.

(a) BDSON corpus: digit recognition task (2300 tests).

DER #parameters
128 gauss. (39 coef.) 0.96 % 1092k

(b) VODIS corpus: voice command recognition task
(11136 tests).

CER #parameters
128 gauss. (39 coef.) 1.80 % 1092k

4. PROPOSED GMM-BASED APPROACH

proposed approach consists in modeling the acoustic space us-
ne unique GMM and then in deriving the state dependent Prob-
ty Density Functions (PDF) from it. The basic transformation
tion to obtain the state-dependent GMM is a MAP adaptation
e weight parameters following by a top-component selection:
the weights of the winning components are memorized for
en state-GMM (Weight Re-Estimation – WRE). An optional
e is also proposed, where the general GMM model is firstly
ted using the same transformation function for all the compo-
(Unique Linear Transformation – ULT). Figure 2 presents the
lete process.
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2. State-dependent transformation by applying ULT following
RE.

ADAPT SET is used for digit recognition task and VADAPT SET for
command recognition task



4.1. Weight Re-Estimation (WRE)

This approach consists in estimating state-dependent weight vector
from the initial GMM and an HMM-based frame alignment. Then,
each state is represented by the state-independent GMM component
set and by its specific weight vector. Two criteria are used for the
weight re-estimation :

• Maximum Likelihood Estimation (MLE),

• Maximum Mutual Information Estimation (MMIE).

4.1.1. MLE

The Gaussian weights (wi) are re-estimated using a MLE criterion
defined by:

w′
i =

wi ∗ L(fr|gi)
nbg

gj=1 wj ∗ L(fr|gj)
(1)

where wx is the a priori weight of the xth Gaussian component,
and L(fr|gx) corresponds to the likelihood of frames fr for a given
state gx.

After this weight adaptation, only the NBest Gaussian compo-
nents are stored in order to decrease the memory occupation.

Furthermore, likelihood for each component of the global GMM
is computed only once and then all the state likelihoods are easily
computed thanks to a simple weighted combination of individual-
component likelihoods.

4.1.2. MMIE

The HMM-training using a discriminant criterion (like MMIE) has
largely been studied ([11]). The aim is to maximize the mutual in-
formation between the training word sequences and the observation
sequences. The MMIE criterion increases the a posteriori probabil-
ity of the word sequence corresponding to the training data given the
training data.

For a training observation sequences {O1, . . . , OR} (of size R)
with corresponding transcriptions wr , the MMIE objective function
to maximize is given by:

FMMIE(λ) =

R

r=1

log
Pλ(Or|Mwr )P (wr)

w̃ Pλ(Or|Mw̃)P (w̃)
(2)

where Mw is the model corresponding to the word sequence w and
P (w) is the linguistic probability. The denominator sums all possi-
ble word sequences ŵ allowed in the task.

4.2. Unique Linear Transformation (ULT)

The method LIAMAP presented in [12] allows to adapt globally the
initial GMM to a given state, using a unique and simple transforma-
tion. This transformation (applied both on the mean and the vari-
ance) is a linear adaptation:

μStateGMM = α ∗ μGaussianCodebook + β (3)

ΣStateGMM = α2 ∗ ΣGaussianCodebook (4)

where α (which is common for μStateGMM and σStateGMM ) and
β are given as follows:

α = Σ1/2Σ−1/2
(5)

and

β = −Σ1/2Σ−1/2μ + μ (6)

More details could be found in [13].
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Evaluation of memory occupation

ach approach - HMM baseline system, WRE and WRE+ULT
estimate the acoustic model sizes (in terms of number of pa-
ters) and select the number of Gaussian components for each
m in order to have the same number of parameters in the mod-
wo limits are used corresponding to realistic memory available

obile phone.

or the largest models, the number of Gaussian components is
ed to 282 components for the WRE method and to 174 compo-

for the ULT+WRE approach. For the smallest models, the
ber of Gaussian components becomes 141 for the WRE ap-
ch and 35 for the ULT+WRE (for the global GMM). Acoustic
rs are composed of 12 static PLP coefficient added energy.
pared to the baseline system, we use only the static parameters
rst and/or second derivative).

5. RESULTS

riments on isolated-digit recognition task were carried out with
ON corpus while others are performed with VODIS for voice

and task.

n order to fit the memory constraint, only the NBest top-
onents are stored. This selection is dynamically made state by
(the same total number of parameters is preserved, the average

ber of components is set to 20 for smallest model and to 30 for
rgest).

egarding table 2(a), with the smallest acoustic model,
ER varies between 3.22% (ULT+WRE/MMIE) and 4.65%

E/MMIE). The DER increases largely while the acoustic model
is reduced from 1092k parameters to 6k parameters. With the
st model the DER is 2.52% (WRE/MMIE) while the acoustic
el size is divided by a factor 100.

able 2(b) shows the results for voice command recognition task
a noisy corpus. The CER is between 4.14% (largest model
LT+WRE/MLE) and 6.09% (smallest model and WRE/MLE).

pared to the 1.80% for the HMM-system without constraint, it
sents an increase but the acoustic model size reduced by a factor
een 100 and 200.

LT+WRE system shows an improvement compared to WRE
for both the model sizes (which correspond to the targeted

cation). Nevertheless, WRE allows a large decrease in terms
mputational resource compared to ULT system (for ULT ap-

ch, the component likelihoods are computed for each state).

6. CONCLUSION AND PERSPECTIVES

is paper, a solution was proposed for embedding automatic
ch recognition in a mobile phone. The proposed technique is
d on a HMM with a global, state-independent, GMM modeling
e acoustic space and a set of transformation functions able to
t this GMM to obtain each state-dependent probability density
tion. This approach reduces drastically the memory size of the
els and the computation time needed to compute the likelihoods

if, in this paper, the focus was mainly put on the memory oc-
tion).

wo different techniques were proposed for the transformation
tions. The first one, WRE, consists in adapting by MAP the
-independent GMM and in selecting and storing only the top-
onent weights. WRE allows to save the memory without re-
g the global GMM size and to reduce the likelihood computa-

time since the component likelihoods are calculated only once
rame. The second one, ULT+WRE, transforms the mean and
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variance parameters before applying WRE. It uses a unique linear
transformation for all the components. ULT+WRE allows a better
modeling of state-dependent PDFs (and adds a cost in terms of com-
puting time).

The method presented in this paper allows to embbed speech
recognition system into mobile phone. For voice command recogni-
tion task a CER of 4.14% (cf. table 2(b)) when the ULT+WRE/MLE
method is applied. A system without memory constraint obtains
a CER of 1.80%, but requires 100 times more memory. For digit
recognition task, the best DER obtain is 2.52% (cf. table 2(a)) with
WRE/MMIE approach. A system without constraint allows a DER
less than 1% but the acoustic model is composed of more than 1
million parameters while our model is about 11k parameters.

In this work, no adaptation was done, on the speaker or on
the environment. Thanks to the structure of our models, an inter-
esting way for these adaptations could be to adapt only the state-
independent GMM, assuming that the state-dependent transforma-
tions could remain unchanged when the state-independent model is
adapted. A possible strategy for this adaptation could be to use the
test data to adapt the common GMM parameters (or a part of the pa-
rameter set) before decoding. Even if few frames are available, only
one model has to be adapted instead of one model per state for a clas-
sical HMM system. Furthermore, this approach doesn’t need a de-
coding before the adaptation since all the frames are related to only
one state. This characteristic suppresses the influence of decoding
errors during the adaptation step and the additional computing cost
remains very low. These adaptations schemes seem very promising
and we will focus on in further work.
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Table 2. Digit Error Rate / Command Error Rate for WRE/MLE, WRE/MMIE, ULT+WRE/MLE and ULT+WRE/MMIE.
(a) BDSON corpus: digit recognition task (2300 tests).

Model size WRE/MLE WRE/MMIE ULT+WRE/MLE ULT+WRE/MMIE

6k 4.17 % 4.65 % 3.39 % 3.22 %

11k 3.09 % 2.52 % 3.00 % 2.70 %

(b) VODIS corpus: voice command recognition task (11136 tests).

Model size WRE/MLE WRE/MMIE ULT+WRE/MLE ULT+WRE/MMIE
6k 6.09 % 6.05 % 5.01 % 5.10 %
11k 5.03 % 5.35 % 4.14 % 4.40 %
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