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Abstract

We describe a unit selection technique for text-to-speech synthe-
sis which jointly searches the space of possible diphone sequences
and the space of possible prosodic unit sequences in order to pro-
duce synthetic speech with more natural prosody. We demon-
strates that this search, although currently computationally expen-
sive, can achieve improved intonation compared to a baseline in
which only the space of possible diphone sequences is searched.
We discuss ways in which the search could be made sufficiently
efficient for use in a real-time system.
Index Terms: speech synthesis, unit selection, prosody.

1. Introduction
At its best, unit selection speech synthesis can produce synthetic
speech with a segmental quality almost indistinguishable from nat-
ural speech. As a consequence, the inadequacy of current models
of prosody become much more apparent, if the F0 and segment
durations predicted by such models are imposed on the synthetic
speech. In some circumstances, the prosody of synthetic speech
can be considered of limited importance and one can use sim-
ple constraints to ensure the system produces conservative neutral
prosody.

There are however many application of speech synthesis
where correct, natural sounding prosody is important. Specifi-
cally, situations where a synthesiser is expected to convey mean-
ing through the prosody. Language generation systems and any
form of dialogue are likely to require the ability to produce em-
phasis and contrasts, and even pitch contours which express doubt
or confirmation. In these situations, neutral prosody is entirely in-
appropriate, and a system using it will sound bad.

The usual approach to modelling prosody is to predict F0 and
duration, usually in terms of symbols which are subsequently re-
alised in the F0 contour and segment durations. In diphone synthe-
sis, these F0 and duration specifications are imposed using signal
processing. In unit selection, it is more usual to incorporate them
into the specification of target utterance and then to search for units
(e.g. diphones or half-phones) that match the target (the closeness
of the match being measured by the target cost function).

Festival has, to date, used CARTs [1] and linear regression
models [2] for the prediction of prosody. These models are appro-
priate for diphone synthesis, or perhaps for HMM-based synthe-
sis; in both cases, signal processing leads to a noticeably unnatural
quality to the synthetic speech signal. However, when these mod-
els are used in a unit selection system, they are clearly the weakest
link in the overall quality of the resulting speech; we have found
that a system without any prosodic model at all often sounds better.

Recent work [3, 4] has shown that unit selection techniques
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be used to search for sequences of prosodic units rather than
ental ones. However, in this previous work, these methods
only been used to find a single target prosodic specification

ch is then used, via the target cost, as a constraint for the
ental search. This method has the major drawback that the

odic sequence is chosen independently of the segmental units;
e is therefore no guarantee that a suitable sequence of segmen-
nits exits in the database. Additionally, since there are likely to
any acceptable prosodic realisations for any given utterance,

early decision to choose a single target prosodic sequence is
rom optimal (and reminiscent of early “phonetic typewriter”
oaches to automatic speech recognition (ASR), in which the

ne sequence was first decided, and then decoded into words).

2. Approach
now introduce a unit selection method that adopts a key prop-
from ASR: the principle of delayed decisions, or the propaga-
of uncertainty. This method jointly searches for a sequence of
ents and a sequence of prosodic units that together minimise

e cost function.
In the following explanation, we will first consider a simpler
em in which a single F0 contour is first predicted by a search

sequence of prosodic units, and then segmental units are cho-
that have similar F0 values to this predicted contour. After
explanation, we describe how our system performs the two
ches jointly.

Comparison to previous work

closest previous work is that of [5] which composes a pre-
ive prosodic model with the segmental search by the use of
hted finite state transducers, to allow for a search of more
one fixed prosodic target. Our approach differs in that in-

d of having a structured model trained on data incorporated
amically into the search procedure, we rely only on the inher-
tructure of the unit selection database, plus the prosodic target
join costs, to predict prosody.
An advantage of our technique is that it requires minimal extra
aration of data when building a new voice, and the prosodic
el for a given voice is always specific to that voice and does

use data from other speakers. A consequence of this is that the
base must be designed to take prosodic coverage into account
ell as segmental coverage.

Predicting an F0 contour

do not employ an explicit predictive model of F0 to produce
contour. Instead, the F0 contour is found using unit selection
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techniques by selecting a prosodic unit sequence that minimises
a cost function, similarly to [4]. The prosodic units are syllables,
from the same speech database used for the segmental units. So,
the prosodic “model” is composed of the speech database plus the
cost function.

The cost function used to select the optimal sequence of
prosodic syllable units ignores the segmental constituents of the
units and is composed of target and join sub-costs, as in a con-
ventional segmental search. The join cost is very simple and only
measures the F0 mismatch at prosodic unit concatenation points.

The target cost uses the following component features: the
phrase type that a syllable is found in, the position in the phrase of
the syllable, the position in the word of the syllable, the presence
of lexical stress on the syllable, and the van Santen and Hirschberg
[6] classifications of the structure of the onset and coda of the syl-
lable.

The phrase type takes values such as statement,
YN-question, Wh-question, and is intended to allow pre-
selection of units of a particular intonational tune type in an at-
tempt to provide consistency at the intonational tune level. The
work in this paper only uses units of the phrase type statement;
design and annotation of datasets containing a wider rage of phrase
types is work in progress.

Both the position in the phrase and position in the word fea-
tures take one of six values each to represents the position of the
syllable. The values (illustrated in figure 1 for position in the word)
are designed to determine whether a syllable is initial, medial or
final in the larger local utterance structure. The six possible values
for these two features are:

IF (Initial and Final) A syllable is the only syllable in the
word/phrase

IP (Initial and Penultimate) The syllable is the first of only two
syllables in the word/phrase.

I (Initial) The syllable is the first syllable of three or more sylla-
bles in the word/phrase

FS (Final and Second) The syllable is the final syllable of a two
syllables word/phrase.

F (Final) The syllable is the final syllable of a word/phrase of
three or more syllables.

M The syllable is medial in a word/phrase of three or more sylla-
bles.

IF

IP FS

I

M

F

cat
catless catless
catlessness
catlessness
catlessness

Figure 1: Examples of syllables for each of the values of the posi-
tion in the word feature.

The lexical stress feature is binary, and the van Santen and
Hirschberg features take the values: -V for unvoiced, +V-S for
voiced but no sonorants, and +S for sonorants.

For each target syllable we currently preselect as suitable can-
didates only syllables which have the correct phrase type, position
in phrase and position in word features. This is done to ensure a
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l of consistency in the intonation tune at the utterance level.
se features are then left out of the target cost.
For example the first syllable unit in the utterance “Take the
k one.” would be have the features statement;I;IF (the
ble is from an utterance with a statement contour, is the first
ble in a phrase containing more than three syllables and is
word consisting of a single syllable) and only syllables in the
base matching this description would be considered as suitable
odic candidates for the syllable ‘take’

Using the resulting F0 contour to guide the segmental
ch

simplicity of explanation, let us continue to assume that the
odic search has predicted a single target F0 contour. The seg-
tal search now simply proceeds in the usual way [7], with the
et cost incorporating a component that measures the difference
een each candidate unit’s F0 and the target F0. Note that the
ontour found by the prosodic search is not imposed on the seg-
tal units, it is merely a constraint guiding the segmental unit
ch.

Joint search

ur system, the prosodic search is not carried out first, but is
e jointly with the segmental search. This is equivalent to first
ing the N best prosodic unit sequences (for very large N) then,
each of them, finding the best segmental unit sequence, and
bining the prosodic and segmental costs to make the final de-
n as to the best segmental sequence.
Rather than constructing a very large finite automaton (FSA)

the product of the two FSAs for the segmental and prosodic
idate units, we implement an equivalent algorithm which we
ribe as a tied search of the two FSAs.
In addition to target and join costs for each search space, a tie
is introduced. The tie cost replaces the F0 component of the
ental target cost and compares a segmental candidate and a

odic candidate in terms of F0.
An updated version of the Festival’s [8] Multisyn [7] engine
used to implement the proposed method. From a single voice
base, two inventories are indexed. This indexing specifies how
data is to be used in each part of search. The database is first
xed as a set of diphones, to produce and inventory for use in
segmental search; it is then indexed as a set of syllable sized
s to be used as the inventory for the prosodic search.
Before the search is performed for a target utterance, the lan-
e processing stage of text-to-speech synthesis is carried using
efault Festival front end, resulting in a heterogeneous relation
h structure [9] representing the utterance. From this structure,
target sequences are created. A segmental target sequence of
ones is created from the phone sequence of the target utter-
, and a prosodic target sequences of syllables is created from
yllable sequence of the target utterance. Two time-aligned fi-
state networks are then constructed from the two sets (prosodic
segmental) of candidate units retrieved from the database.
Each of the states in the prosodic network, which correspond
llable-sized units, are assigned a time index to match the time
x of the first phone in the rhyme of the syllable. As the seg-
tal units represent diphones rather than phones, the match is
ally made with the segmental units whose left half is the first
ne in the syllable rhyme. An example of this alignment is

n in figure 2
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Prosodic Units (syllables)
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Figure 2: Alignment between prosodic syllable units and segmen-
tal diphone units. Prosodic unit candidates receive a time index
corresponding to the first diphone whose left edge is part of the
syllable rhyme.

The search for units is implemented as token passing [10]. To-
kens are associated with a pair of states: one from each of the two
FSAs. As a token is duplicated and passed on to the connecting
states in one network, the copies of the token keep their association
with the original token’s state in the other network. As propaga-
tion occurs, tokens maintain a record of their path history through
both networks and the cumulative cost of the path so far.

Propagation of tokens occurs in a time synchronous fashion.
As the time variable is incremented, any tokens associated with
a state in the segment network with a time index of less than this
value are propagated forward one state in that network. Once there
are no tokens in the segment network at times less than the cur-
rent time, tokens are propagated through the prosodic network in
a similar manner. Note that the units in the prosodic network are
syllables, so are generally of longer duration than the segmental
units.

As a token enters a new state in either network, the local (ei-
ther prosodic or segmental) target and join costs are added to the
cumulative cost of that token. In addition, if a token enters a state
in one network with the same time index as the node that the token
is associated with in the other network, then the tie cost is calcu-
lated and added to the cumulative cost of that token.

2.5. Dynamic programming and pruning

Since the search space is very large (the square of the usual seg-
mental unit selection search space), an efficient search strategy is
of paramount importance. The first technique considered is dy-
namic programming, in which tokens which are in the same pair
of states can be directly compared and only the best (lowest cost)
one retained. This is known as “Viterbi search” in ASR and leads
to much faster search with no reduction in accuracy.

In practice, we have found that Viterbi search alone is not suffi-
cient to make the search computationally feasible, so we currently
allow the comparison of two or more tokens that are in the same
state in only one of the machines. Unlike Viterbi search, this tech-
nique may lead to a reduction in accuracy.

To further reduce the computational cost of the search, beam
pruning is employed performed at two different points in the
search. An initial pruning occurs as the the networks are first con-
structed. Target costs are pre-calculated for each candidate unit
and a beam is used to prune away high cost candidates. The sec-
ond beam pruning occurs during token propagation, as in ASR.
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. Performance issues and system analysis
current implementation is designed to demonstrate that the
osed method can produce improved prosody. For computa-

al reasons, we currently only use a voice database of limited
(from the ARCTIC [11] datasets).

Setting Parameters

search depends on a number of parameters which require tun-
There are now five sub-components making up the cost of

osen segmental unit sequence: prosodic and segmental target
s, prosodic and segmental join costs and the tie cost.
Each of these costs ranges from 0 to 1 and they are combined
weighted sum to form the overall cost. Initial results suggest

tie cost needs to be weighted quite heavily to ensure that syn-
nisation between the two candidate paths outweighs other se-
on criteria. With the target and join costs all weighted at unity
a tie cost with a weight of five, the system produces reasonable
lts.
To compare the proposed approach to a baseline system with-
the prosodic search, a series of sentences generated with both
ems were compared. It was found that, in general, the seg-
ts chosen by the proposed method had exactly the same seg-
tal target costs as the corresponding units chosen by the base-
system1 but that different segmental units were being chosen
given target the majority of the time. In other words, includ-

the prosodic search does not lead to worse selections of seg-
tal units (as measured by the segmental target cost).In contrast,
egmental join costs were generally different and, on average,
tly higher for the full prosodic search than for the segmental-
search. This result is important because it shows that can-

te unit sequences are available from the inventory that have
er prosody without having worse segmental quality.

4. Discussion
he ARCTIC datasets only provide a basic level of diphone cov-
e, with no specific account of prosodic coverage, we expected
resulting synthetic speech to have reduced segmental quality
turn for improved prosodic quality. However, it appears that
lternative segmental unit sequence chosen when the prosodic

ch is included is generally as good as the sequence chosen
n only the segmental search is performed.
The main drawback of the current system is that the small
base does not really provide sufficient prosodic coverage to
rate anything other than statement intonation. However as the

em is designed to partition the prosodic data based on tune
, there is no reason to think that system could not generate
r tunes if the underlying database was sufficiently rich.
To further reduce the computational cost of the method, a va-

of standard techniques are available from ASR, including
ti-pass search in which an initial N-best search of the prosodic
segmental spaces is performed using simpler models (e.g. with
oin cost).
One situation where the search space becomes very large is
n, for two adjacent target units, a large number of candidates
ound in the inventory. It may be possible to resolve this prob-
by applying pruning during token propagation, rather than

Note that the target cost is essentially quantised (it has only a limited
f possible values within the interval 0 to 1) because it is composed of
all number of discrete features



only at the end of each time cycle.

4.1. Specification of Intonation

The method we have described does not yet allow direct control
over intonation, either symbolically or acoustically. This is prob-
ably acceptable the statement intonation generated so far, but the
main motivation behind our development of the method is to allow
prosody to carry specific meanings. Once a larger database is used,
which contains more variation in prosody, we predict that perfor-
mance will degrade unless intonation is symbolically represented.
The categorisation of the prosodic units into subsets of individual
phrase types, so that only prosodic units from the phrase type of
the target are chosen, should allow the system to perform reason-
ably well for different types of pitch contour, but this will not be
enough to deal with contrastive stress, for example. In future, we
plan to use the method with a voice database designed specifically
for prosodic richness [12]. Precisely how intonation should be rep-
resented, in order to facilitate the control required to realise con-
trastive stress and other phenomena, is still open to question. The
main requirements of such a representation include that it should
be a simple representation with which the the database can be auto-
matically labelled, given the speech and the text of each utterance
in the database.

5. Conclusions
We have demonstrated that a parallel search of the segmental can-
didate unit space and a prosodic unit space is feasible, at least with
a small database. The method produces improved synthetic speech
with more natural pitch contours, without reduction in segmental
quality. This technique is computationally expensive, but we be-
lieve we can use ASR-like techniques to provide a real-time solu-
tion.
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