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Abstract
This paper presents a new method of constructing phonetic 
decision trees (PDTs) for acoustic model state tying based on 
implicitly induced prior knowledge. Our hypothesis is that 
knowledge on pronunciation variation in spontaneous, 
conversational speech contained in a relatively large corpus can 
be used for building domain-specific or speaker-dependent 
PDTs. In the view of tree structure adaptation, this method leads 
to transformation of tree topology in contrast to keeping fixed 
tree structure as in traditional methods of speaker adaptation. A 
Bayesian learning framework is proposed to incorporate prior 
knowledge on decision rules in a greedy search of new decision 
trees, where the prior is generated by a decision tree growing 
process on a large data set. Experimental results on the 
Telemedicine automatic captioning task demonstrate that the 
proposed approach results in consistent improvement in model 
quality and recognition accuracy. 
Index Terms: decision tree state tying, approximate Bayesian 

1. Introduction
Recently, many efforts have been made to improve PDT state 
tying based acoustic modeling for continuous speech 
recognition [1, 2, 3]. Tree-structured adaptation methods were 
also reported, which attempted to apply hierarchically organized 
priors in building more accurate acoustic models by speaker 
adaptation [4, 5].  Researchers tackled the tree construction 
problem from different perspectives, which can be roughly 
grouped into two categories, namely the knowledge-based and  
the data-driven approaches. The knowledge-based approach 
refers to phonetic decision tree state tying which uses phonetic 
decision rules for clustering of HMMs. The data-driven 
approach refers to agglomerative clustering based on a distance 
measure between Gaussian densities. An earlier work in [6] has 
shown that the two approaches have similar performances while 
the knowledge-based method has the advantage of allowing 
model construction for unseen triphones. Another limitation of 
the data-driven method is its lack of robustness in dealing with 
mismatches between acoustic feature spaces caused by 
pronunciation variations when applied to speaker adaptation. 

It is our belief that knowledge-based modeling can generalize 
better in large pronunciation variation situations. However, 
without adaptive learning, knowledge-based approach could 
possibly suffer from mismatches between the knowledge source 
and the specific task domain for which it needs to be applied. 
Our hypothesis is that systematic relationships between 
phonological variations and acoustic realizations can be 
extracted by a dynamic PDT process growing on a relatively 
large data source. Such information can in turn be used 
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ptively for generating domain-specific or speaker-dependent 
ustic models. 
he common framework of tree growing methods is recursive 

titioning of input space by using a one-step lookahead 
tegy. Research efforts on improving phonetic decision tree 
deling have been focused on tree growing strategy [1], model 
cture selection with information criterion [2], and 
ichment of splitting questions [1][2]. However, without using 
ropriate prior knowledge on favored decision tree structures, 
ertainty remains in the resulting phonetic decision trees. For 
ance, once a wrong decision is made, the split is irreversible 
 there is no provision for backtracking and choosing an 
rnative split. This problem is acute when speaker adaptation 
arried out based on a mismatched tree structure. To the best 
wledge of the authors, adaptive learning of phonetic 
ision tree structures has not yet been shown in previous 
ratures.
n this paper, we present a novel acoustic modeling approach 
g knowledge-based adaptive decision tree state clustering. 
adaptive, we mean that the prior knowledge on phonological 
s is implicitly represented by a tree-generating process on a 
e corpus, which is used to select good candidate splitting 

iables for constructing target PDTs in a specific domain that 
 limited amount of training data. In contrast to traditional 
hods which find an optimal tree cut in a single large tree 
en a speaker independent tree), the proposed method 
loys prior knowledge of decision rules in a greedy search 
domain-specific PDTs, and thus the resulting tree is not 

essarily restricted to be a tree cut of an existing tree.  The 
tributions of this paper are the following three aspects. 
 general Bayesian learning framework for PDTs is 

eloped to incorporate prior knowledge of favored tree 
ctures. The probability distribution of a decision tree is 
omposed into probabilities on tree structure, which contains 
tree topology and the tests carried out at internal nodes, and 

observation distributions at leaf nodes. By making 
ropriate simplifications, our tree priors are mainly composed 
rior probabilities of splitting variables at internal nodes. 
 Bayesian tree information criterion (BTIC) is defined and 

d as decision tree model selection criterion. Assuming 
rmative priors on tree structure, BTIC is derived as an 
nsion to the well-known Bayesian information criterion 

C).
 computationally feasible algorithm for prior probability 

uction is developed. The priors of splitting questions are 
licitly represented by a decision tree growing process on a 
e corpus. In general, considering the number of possible 
izations of a decision tree, a direct computation of priors on 
 structures is intractable. We propose a novel solution to this 
blem by introducing an oracle tree generation process which 
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provides estimates of prior probabilities of splitting variables 
recursively in a top-down manner. 

The rest of the paper is organized as follows. In section 2, a 
theoretical background on Bayesian trees is introduced. 
Formulation for Bayesian learning of phonetic decision trees 
and the proposed BTIC are presented in section 3. Section 4 
describes the knowledge-based adaptive PDT algorithm with the 
use of a dynamic decision tree process for obtaining priors on
the splitting questions. Experimental results are presented in 
Section 5. Finally, findings and future research questions are 
summarized in Section 6. 

2. Background on Bayesian Decision Tree 
The theory and algorithms on Bayesian learning of decision
trees were first studied in [7], where probability distribution of a 
decision tree was decomposed into probabilities of a tree
structure, which contains the tree topology and the tests at each
splitting node, and the observation distribution densities at each 
leaf node. Subsequently, effective Bayesian stochastic search 
algorithms using Markov Chain Monte Carlo (MCMC)
simulation were developed for Bayesian inference of trees [8].
In introducing the framework of Bayesian decision tree, we will
follow the notations as used in [8].

2.1. Bayesian Decision Tree 
A binary decision tree with k terminal nodes is uniquely
identified by a set of variables ,

, where ,  and  denote the 
position, variable and the point where the variable is split for 
each splitting node i. Let 

var, ,pos rule
i i iT s s s

1,..., 1i k pos
is var

is rule
is

1,..., kC c c  be the set of k terminal

nodes, and define an associated parameter set as 

1,..., k , where j  is the parameter of the observation 

distribution density at the jth terminal node. A training data set is 
defined as , , ,  1,...,t tY X y x t n , where 

 is the d-dimensional observation variable and 1,...,
T

dy y y

1,...,
T

px x x  is the p-dimensional splitting variable. 

Assume that conditioned on T, , the observations are 
independent across terminal nodes, and are i.i.d. within terminal 
nodes. The joint distribution of observations is of the form 

1 1

| , , |
ink

ij i
i j

p Y X T p y (1)

where ,  1,...,i ijY y j ni  denote data points in the terminal

node . The posterior distribution of T is given byic

 (2) 
dTpTXYpTp

TpTXYpYXTp

|,,|

,|,|

up to a normalizing constant. Analytical forms of the integral 
| , | , , |p Y X T p Y X T p T d can be obtained 

by using conjugate priors or Laplace approximation [8][9].
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. Non-Informative Prior 

prior on tree 1,...,1,,, var kisssT rule
ii

pos
i  can be 

cified as follows. First, a discrete distribution var
isp  is 

ined over the domain  that corresponds to

ices of the p splitting variables in 

psi ,...,1var

1,...,
T

px x x . Second, a

ditional distribution var| i
rule
i ssp  is specified with

ng a total of 

rule
is

var
in s possible values for the splitting 

iable . Finally, an upper bound of splits allowed in one
 down the tree, , is set to ensure a finite number of 

sible trees, i.e., 

var
is

maxS

12,...,1 1maxSpos
is .

sually the distributions var
isp  and var| i

rule
i ssp  are 

sen as uniform distributions. In such a case, the prior
ribution for a complete tree structure becomes

1 1var var

1
1

1

var
1

|

1 1 ! 1

k krule pos
i i i i

i

k

i ki

p T p s s p s p s

k
p S Kn s

(3)

re  is the total number of possible ways of choosing kS
1

1
kos  to produce a k-terminal node tree, and K is the

imum number of terminal nodes. For binary decision trees, 
 is given in graph theory as the Catalan number

k
k

k
Sk

2
1

1 (4)

 prior on tree topology 1

1

! 1kpos
i

k

kp s
S K

 is a function 

he number of terminal nodes k and is independent of rule 
gnments in splitting nodes. 

3. Bayesian PDT Learning 

. Informative Prior on Tree Structure 

e that the prior Tp defined in (3) is non-informative. 
en prior knowledge of favored tree structures is available, it
eneficial to consider informative priors on tree structures. In
netic decision tree based state tying, this knowledge is
ied by the splitting variables, i.e., phonetic questions being 
ed at each splitting node. Since the answers to the phonetic
stions only take Boolean values (true/false), we have

1| var
i

rule
i ss  conditioned on a given splitting variable.

thermore, 1

1

kpos
isp  only depends on tree topology and is

med uniformly distributed, therefore it is treated as a 
sance factor. By focusing on splitting variables, we use the 
owing form of prior in PDT modeling 

(5)
1

var

1

k

i
i

p T p s



The strategy of implicit modeling for var
isp  will be given in 

Section 4. 

3.2. Bayesian Tree Information Criterion 
The Bayesian model selection criterion chooses the tree
structure which has the highest posterior probability.
Substituting (1) and (5) into (2) yields

1
var

1 1 1

| , | , , |

| |
ink k

i ij i i
i i j

p T X Y p T p Y X T p T d

p s p y p T d
 (6) 

The Bayesian tree information criterion (BTIC) is defined to be 
the logarithm of the tree posterior probability

(7)log | ,BTIC T p T X Y
A key problem in evaluating BTIC is the computation of the 

evidence of observations, | ,p Y X T  , given as, 

 (8) 
1 1

| , | |
ink

ij i i
i j

p Y X T p y p T d

The integral over parameter space  is often intractable when 
considering complex models. The Laplace approximation
method for exponential family as described in [9] has been
extensively used in the literature to evaluate the integral in (8).
Assuming that the function |i i i |p Y p T  is strongly

peaked at the ML estimate î , i.e., | |i i ip Y p T  is 

dominated by the term |i ip Y , a second-order Taylor series 

expansion of the logarithm of this function around î  leads to a 
tractable form

0

ˆlog | | log |

1ˆ log | log 2 log log
2 2 2

ˆlog | log
2

i

i i i i i i

i i

n

i i i

p Y p T d p Y

D Dp T n I

Dp Y n BIC

y i

(9)

where D is the number of free parameters in the model and 

y iI is the Fisher information matrix. The resulting value is 

equivalent to the well known Bayesian information criterion
(BIC), also known as Schwarz information criterion (SIC) [9].
After standard analytical simplification, the Bayesian tree
information criterion as defined in (8) is derived to be 

1
var

1

log
k

i
i

BTIC T BIC C p s (10)

where  is a regularizing parameter,  is the Bayesian

information criterion for the terminal nodes, given as follows, 
BIC C

1

ˆ, log | log
2

i

k

i i i i i
c C i

DBIC C BIC Y c p Y n  (11) 

4. Knowledge-Based Adaptive Decision Tree 
Our knowledge-based adaptive decision tree (KBA-PDT) is a 
top-down Bayesian PDT learning approach which utilizes 
BTIC as model selection criterion. The key in computing BTIC 
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etting appropriate estimates of the prior probabilities of 
tting variables from a large corpus. Considering the huge 
ber of possible realizations of a decision tree, a direct

mation for var
isp would be intractable [8]. In an adaptive 

ning setting, we propose a novel solution to this problem by
rsively defining var

isp  based on the beliefs generated by a
amic decision tree growing process on a large data set, as 
ows

 (12) 
var

var ,  if  top  variables
0,  otherwise

i
i

BTIC s h
p s

re

_ _( ) ( ) (i L i R iBTIC BIC s BIC s BIC s )

he information gain due to splitting the node is  to its left 

 right children nodes  and  according to the 

tting variable 

_i Ls _i Rs
var
is , h is the number of splitting variables

ch give the h-best improvement in BTIC. Note that in
tting the large data set, the prior on splitting variables is 
med uniform and the information gain is equivalent to 
rovement in BIC. The probability var

isp  is defined 
itive only for the h-best splitting variables, and its value is
portional to the corresponding information gain with the 
hastic constraint that the sum of the probabilities equal to 
. Forcing the probabilities of ineffective splitting variables to
 is for reducing noise and uncertainty in the tree learning

cess.
s discussed above, BTIC model selection is performed by
 interleaved tree growing processes. The primary tree
cess is the domain-specific PDT which we are searching for, 
 hence is called a target tree. The secondary tree process
vides beliefs on splitting variables to the primary tree, and is
efore called an oracle tree. The split of oracle tree is 
erned by the target tree and is in fact an identical copy of the 
et tree but growing in a different observation space. Each 
 is built top-down in a recursive fashion. Initially, all the 
es to be clustered are pooled at the roots of the oracle tree 
target tree, respectively, and the BTICs of the trivial trees 

ntain only one node) are computed. Next, the oracle tree tries
the splits and get the estimates of var

isp , and forward 
e probability estimates to the target tree. Having received 
var
i , the target tree node is split into two by finding the 

stion which gives the maximum increase in BTIC. The 
et tree then sends its splitting information (node split and
stion used) back to oracle tree. At last, oracle tree follows
same split as that of target tree. This process is repeated 

il some stopping criterion is met. These stopping criteria
ude thresholds on occupancy count at leaf nodes, and 
rmation gain obtained from a split. To evaluate BTIC, recall 
 we use the approximated BTIC given by

1
var

1 1
( ) log log log

2

k k

i i
i i

DIC T L T n p s (13)

re L T is the likelihood of the observations on the leaf 

es,  is an adjustable regularizing factor, and the sample
nt at the leaf node , , is approximated by accumulatedic in



state occupancies which are estimated from the Baum-Welch 
algorithm.

5. Experiments

5.1. Experimental Setup 
The proposed knowledge-based adaptive decision tree algorithm 
was evaluated on the Telemedicine automatic captioning task 
developed at the University of Missouri-Columbia. For a 
detailed description of this project, please refer to [10]. Speaker 
dependent acoustic models were trained for 5 speakers, 
including two females (D1 and D5) and three males (D2, D3, 
D4). A summary of the data sets is provided in Table 1. The 
training and test datasets were extracted speech data from the 
speakers’ conversations with clients in mock Telemedicine 
interviews. Along with speech durations, word counts from 
transcription texts are also given in Table 1. Speech features 
consisted of 39 components including 13 MFCCs and their first 
and second order time derivatives. Feature analysis was made at 
a 10 ms frame rate with 20 ms window size. Gaussian mixture 
density based hidden Markov models (GMM-HMM) were used 
for within-word triphone modeling, where each GMM 
contained 16 Gaussian components. The task vocabulary is of 
the size 46,489, with 3.07% of vocabulary words being medical 
terms. 
Table 1. Datasets of 5 Speakers: speech(min.)/text(no. of words) 

Training set Test set 
D1 210/35,348 29.8/5,105
D2 200/39,398 14.3/2,760
D3 145/28,700 19.3/3,238
D4 180/39,148 27.8/6,492
D5 250/44,967 12.1/3,998

Total 985/187561 103.3/21593

5.2. Experimental Results 
HMM states were tied using the proposed BTIC based decision 
tree procedure (KBA-PDT), where the large corpus for oracle 
tree construction contained pooled speech from all the speakers, 
and the small corpus for a target tree contained speech of a 
single speaker. PDT question set used was the same as the HTK 
question set [6]. Prior to building the trees, single Gaussian 
acoustic models were first estimated for untied triphone states 
and sufficient statistics were accumulated for the oracle and 
target trees. The resulting speaker dependent PDTs were then 
used to cluster HMM states and construct unseen triphones. At 
last, tied single Gaussian models were augmented to 16 
components by the HTK splitting procedure. Baseline models 
were also trained by using the conventional maximum 
likelihood criterion (ML-PDT). The model complexity and 
word accuracy results are summarized in Table 2, where the 
tuning factors of h and  were optimized for each speaker. The 
average results were weighted by the relative word counts of the 
five test datasets. It is shown that KBA-PDT consistently 
outperformed ML-PDT in increased accuracy (by 0.7% 
absolute) and reduced model complexity (by 27% relative). 

6. Discussion and Conclusions 
In this paper, we presented a novel acoustic modeling approach 
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Table 2. Effectiveness of knowledge-based adaptive PDT 
KBA-PDT ML-PDT

Number of states 1611 2238D1 Word accuracy 81.75 81.17
Number of states 1119 1569D2 Word accuracy 74.30 73.15
Number of states 799 1156D3 Word accuracy 74.98 73.95
Number of states 1027 1521D4 Word accuracy 78.35 77.96
Number of states 1552 1838D5 Word accuracy 83.55 82.80
Number of states 1240 1700 Avg. Word accuracy 79.09 78.39

g knowledge-based adaptive decision tree state tying. A 
esian learning framework for PDT was developed to 
rporate prior knowledge on tree structures, and an oracle-
/target-tree process was devised to efficiently search for 
imal splits based on a Bayesian tree information criterion 
ly proposed in this work.  

t has been shown that the proposed method gives consistent 
rovement over conventional methods in model quality and 
gnition performance. When tested on the Telemedicine 
matic captioning task, it improved the word error rate by 
 (absolute) on average with 27% reduced model 

plexity, using optimal settings of training factors for each 
aker. 
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