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Abstract

This paper presents a new method of constructing phonetic
decision trees (PDTs) for acoustic model state tying based on
implicitly induced prior knowledge. Our hypothesis is that
knowledge on pronunciation variation in spontaneous,
conversational speech contained in a relatively large corpus can
be used for building domain-specific or speaker-dependent
PDTs. In the view of tree structure adaptation, this method leads
to transformation of tree topology in contrast to keeping fixed
tree structure as in traditional methods of speaker adaptation. A
Bayesian learning framework is proposed to incorporate prior
knowledge on decision rules in a greedy search of new decision
trees, where the prior is generated by a decision tree growing
process on a large data set. Experimental results on the
Telemedicine automatic captioning task demonstrate that the
proposed approach results in consistent improvement in model
quality and recognition accuracy.

Index Terms: decision tree state tying, approximate Bayesian

1.

Recently, many efforts have been made to improve PDT state
tying based acoustic modeling for continuous speech
recognition [1, 2, 3]. Tree-structured adaptation methods were
also reported, which attempted to apply hierarchically organized
priors in building more accurate acoustic models by speaker
adaptation [4, 5]. Researchers tackled the tree construction
problem from different perspectives, which can be roughly
grouped into two categories, namely the knowledge-based and
the data-driven approaches. The knowledge-based approach
refers to phonetic decision tree state tying which uses phonetic
decision rules for clustering of HMMs. The data-driven
approach refers to agglomerative clustering based on a distance
measure between Gaussian densities. An earlier work in [6] has
shown that the two approaches have similar performances while
the knowledge-based method has the advantage of allowing
model construction for unseen triphones. Another limitation of
the data-driven method is its lack of robustness in dealing with
mismatches between acoustic feature spaces caused by
pronunciation variations when applied to speaker adaptation.

It is our belief that knowledge-based modeling can generalize
better in large pronunciation variation situations. However,
without adaptive learning, knowledge-based approach could
possibly suffer from mismatches between the knowledge source
and the specific task domain for which it needs to be applied.
Our hypothesis is that systematic relationships between
phonological variations and acoustic realizations can be
extracted by a dynamic PDT process growing on a relatively
large data source. Such information can in turn be used
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adaptively for generating domain-specific or speaker-dependent
acoustic models.

The common framework of tree growing methods is recursive
partitioning of input space by using a one-step lookahead
strategy. Research efforts on improving phonetic decision tree
modeling have been focused on tree growing strategy [1], model
structure selection with information criterion [2], and
enrichment of splitting questions [1][2]. However, without using
appropriate prior knowledge on favored decision tree structures,
uncertainty remains in the resulting phonetic decision trees. For
instance, once a wrong decision is made, the split is irreversible
and there is no provision for backtracking and choosing an
alternative split. This problem is acute when speaker adaptation
is carried out based on a mismatched tree structure. To the best
knowledge of the authors, adaptive learning of phonetic
decision tree structures has not yet been shown in previous
literatures.

In this paper, we present a novel acoustic modeling approach
using knowledge-based adaptive decision tree state clustering.
By adaptive, we mean that the prior knowledge on phonological
rules is implicitly represented by a tree-generating process on a
large corpus, which is used to select good candidate splitting
variables for constructing target PDTs in a specific domain that
has limited amount of training data. In contrast to traditional
methods which find an optimal tree cut in a single large tree
(often a speaker independent tree), the proposed method
employs prior knowledge of decision rules in a greedy search
for domain-specific PDTs, and thus the resulting tree is not
necessarily restricted to be a tree cut of an existing tree. The
contributions of this paper are the following three aspects.

A general Bayesian learning framework for PDTs is
developed to incorporate prior knowledge of favored tree
structures. The probability distribution of a decision tree is
decomposed into probabilities on tree structure, which contains
the tree topology and the tests carried out at internal nodes, and
the observation distributions at leaf nodes. By making
appropriate simplifications, our tree priors are mainly composed
of prior probabilities of splitting variables at internal nodes.

A Bayesian tree information criterion (BTIC) is defined and
used as decision tree model selection criterion. Assuming
informative priors on tree structure, BTIC is derived as an
extension to the well-known Bayesian information criterion
(BIC).

A computationally feasible algorithm for prior probability
induction is developed. The priors of splitting questions are
implicitly represented by a decision tree growing process on a
large corpus. In general, considering the number of possible
realizations of a decision tree, a direct computation of priors on
tree structures is intractable. We propose a novel solution to this
problem by introducing an oracle tree generation process which

September 17-21, Pittsburgh, Pennsylvania



INTERSPEECH 2006 — ICSLP

provides estimates of prior probabilities of splitting variables
recursively in a top-down manner.

The rest of the paper is organized as follows. In section 2, a
theoretical background on Bayesian trees is introduced.
Formulation for Bayesian learning of phonetic decision trees
and the proposed BTIC are presented in section 3. Section 4
describes the knowledge-based adaptive PDT algorithm with the
use of a dynamic decision tree process for obtaining priors on
the splitting questions. Experimental results are presented in
Section 5. Finally, findings and future research questions are
summarized in Section 6.

2. Background on Bayesian Decision Tree

The theory and algorithms on Bayesian learning of decision
trees were first studied in [7], where probability distribution of a
decision tree was decomposed into probabilities of a tree
structure, which contains the tree topology and the tests at each
splitting node, and the observation distribution densities at each
leaf node. Subsequently, effective Bayesian stochastic search
algorithms using Markov Chain Monte Carlo (MCMC)
simulation were developed for Bayesian inference of trees [8].
In introducing the framework of Bayesian decision tree, we will
follow the notations as used in [8].

2.1. Bayesian Decision Tree

A Dbinary decision tree with k£ terminal nodes is uniquely
identified by a set of variables T:(S_P”S’s"”,s"“"’) s

i i i

var le

i=l,...k—1, where s/, g denote the

ru.
l.p"s and s,

position, variable and the point where the variable is split for
each splitting node i. Let C = {Cl""’ck} be the set of & terminal

nodes, and define an associated parameter set as

®= (61 A ) , where 49/, is the parameter of the observation
distribution density at the /" terminal node. A training data set is
defined as (Y. X)={y.x}, 1=1...n, where

t

y= ( Visees Vg )T is the d-dimensional observation variable and

T
X = (xl N ) is the p-dimensional splitting variable.

Assume that conditioned on (G),T), the observations are

independent across terminal nodes, and are i.i.d. within terminal
nodes. The joint distribution of observations is of the form

p(Y|X,®,T)=ﬁﬁP(y[j|9[)

i=1 j=1

O

where Y = { Virs j=1.., ”i} denote data points in the terminal
node C; . The posterior distribution of T'is given by
p(T1X.¥) o p(Y| X.T)p(T)
= p(1)[p(Y | X,0,7)p(® | T)d®
up to a normalizing constant. Analytical forms of the integral
p(Y \ X,T) = IP(Y \ X,@,T)p(@ | T)d@) can be obtained

by using conjugate priors or Laplace approximation [8][9].
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2.2. Non-Informative Prior

var _ rule
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)iZI,...,k—l can be

specified as follows. First, a discrete distribution p(siv'““) is

The prior on tree 7 = (S ,S

defined over the domain Sl.Var S {l,..., p} that corresponds to

indices of the p splitting variables in y = (xl’.__, X, )T . Second, a

| Sivar )

taking a total of n(sivar) possible values for the splitting

rule

is specified with s;

rule

conditional distribution p(si

variable Sl.var. Finally, an upper bound of splits allowed in one

path down the tree, S e ? is set to ensure a finite number of
e {l,.. 25" ~1f,
Usually the distributions p(siv“) and p(s rule

i

possible trees, i.e., Sl."ms
|sl.var) are
chosen as uniform distributions. In such a case, the prior
distribution for a complete tree structure becomes

])

0= T oo 15} o)),

S afen
i=1 n(Svar)P SkK

i

3)

where §, is the total number of possible ways of choosing

k-1
{Sip o8 }1 to produce a k-terminal node tree, and K is the

maximum number of terminal nodes. For binary decision trees,
S, is given in graph theory as the Catalan number

1 (2k
S, =—
k+1\ k

The prior on tree topology p( {

“4)

_ ﬂ l is a function

)4

of the number of terminal nodes k and is independent of rule
assignments in splitting nodes.

3. Bayesian PDT Learning

3.1. Informative Prior on Tree Structure

Note that the prior p(T) defined in (3) is non-informative.

When prior knowledge of favored tree structures is available, it
is beneficial to consider informative priors on tree structures. In
phonetic decision tree based state tying, this knowledge is
carried by the splitting variables, i.e., phonetic questions being
asked at each splitting node. Since the answers to the phonetic
questions only take Boolean values (true/false), we have

rule

pls
Furthermore, p ({s pos

|sivar):l conditioned on a given splitting variable.

/ }:H) only depends on tree topology and is
assumed uniformly distributed, therefore it is treated as a
nuisance factor. By focusing on splitting variables, we use the
following form of prior in PDT modeling

p(T>ocijp(s:“)

®)
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The strategy of implicit modeling for p(sivar) will be given in

Section 4.
3.2. Bayesian Tree Information Criterion

The Bayesian model selection criterion chooses the tree
structure which has the highest posterior probability.
Substituting (1) and (5) into (2) yields

p(T1X.Y)e p(T) [p(Y|X,0,7) p(©|T)d®

oc{ p(s” }J.H{prye) 6?|T)}d

The Bayesian tree information criterion (BTIC) is defined to be
the logarithm of the tree posterior probability

BTIC(T)=log p(T| X,Y) @)
A key problem in evaluating BTIC is the computation of the
evidence of observations, p(Y | X,T) , given as,

p(YI1X.T)= ﬂ"[{]‘[p v,18)p eT)}d@ ®)

The integral over parameter space @ is often intractable when
considering complex models. The Laplace approximation
method for exponential family as described in [9] has been
extensively used in the literature to evaluate the integral in (8).
Assuming that the function p(Y: |6, ) P(et | T) is strongly

p(¥18)p(61T) s
dominated by the term p(Y, |6, ) , a second-order Taylor series

(6)

peaked at the ML estimate 9:_, ie.,

expansion of the logarithm of this function around 67/ leads to a
tractable form
log [p(%16,) p(6,1T)d6, ~log p(¥,16))

) 9
+10gp(9,.|T)+§log(27r)—§1ogni_% )

1,(6))

n;>>0

~

~\ D
logp(Y,. \ Hi)——lognl. =BIC
2
where D is the number of free parameters in the model and
I, (91) is the Fisher information matrix. The resulting value is

equivalent to the well known Bayesian information criterion
(BIC), also known as Schwarz information criterion (SIC) [9].
After standard analytical simplification, the Bayesian tree
information criterion as defined in (8) is derived to be

)47 3 log p(s) (10)
i=1

where y is a regularizing parameter, BIC(C) is the Bayesian

BTIC(T)=BIC(C

information criterion for the terminal nodes, given as follows,

BIC(C ZBIC Z(logp(Y\Q) lognj an

4. Knowledge-Based Adaptive Decision Tree

Our knowledge-based adaptive decision tree (KBA-PDT) is a
top-down Bayesian PDT learning approach which utilizes
BTIC as model selection criterion. The key in computing BTIC
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is getting appropriate estimates of the prior probabilities of
splitting variables from a large corpus. Considering the huge
number of possible realizations of a decision tree, a direct

") would be intractable [8]. In an adaptive

estimation for p siva

learning setting, we propose a novel solution to this problem by

recursively defining p(siw“) based on the beliefs generated by a

dynamic decision tree growing process on a large data set, as
follows

var

p(si (12)

)OC ABTIC, if s € top h variables
otherwise

03
where

ABTIC =(BIC(s, ,)+BIC(s, ;))-BIC(s,)
is the information gain due to splitting the node s, to its left
and right children nodes §; ; and §; , according to the

splitting variable Sl.var, h is the number of splitting variables

which give the A-best improvement in BTIC. Note that in
splitting the large data set, the prior on splitting variables is
assumed uniform and the information gain is equivalent to

is defined

positive only for the s-best splitting variables, and its value is
proportional to the corresponding information gain with the
stochastic constraint that the sum of the probabilities equal to
one. Forcing the probabilities of ineffective splitting variables to
zero is for reducing noise and uncertainty in the tree learning
process.

As discussed above, BTIC model selection is performed by
two interleaved tree growing processes. The primary tree
process is the domain-specific PDT which we are searching for,
and hence is called a target tree. The secondary tree process
provides beliefs on splitting variables to the primary tree, and is
therefore called an oracle tree. The split of oracle tree is
governed by the target tree and is in fact an identical copy of the
target tree but growing in a different observation space. Each
tree is built top-down in a recursive fashion. Initially, all the
states to be clustered are pooled at the roots of the oracle tree
and target tree, respectively, and the BTICs of the trivial trees
(contain only one node) are computed. Next, the oracle tree tries

improvement in BIC. The probability p(sivar

all the splits and get the estimates of p(sivar), and forward

these probability estimates to the target tree. Having received
var

p(si
question which gives the maximum increase in BTIC. The
target tree then sends its splitting information (node split and
question used) back to oracle tree. At last, oracle tree follows
the same split as that of target tree. This process is repeated
until some stopping criterion is met. These stopping criteria
include thresholds on occupancy count at leaf nodes, and
information gain obtained from a split. To evaluate BTIC, recall
that we use the approximated BTIC given by

BTIC(T)~logL ——Zlogn +;/Zlogp< )

where L(T) is the hkehhood of the observatlons on the leaf

, the target tree node is split into two by finding the

(13)

nodes, y is an adjustable regularizing factor, and the sample

count at the leaf node ¢,, n,, is approximated by accumulated
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state occupancies which are estimated from the Baum-Welch
algorithm.

5. Experiments

5.1. Experimental Setup

The proposed knowledge-based adaptive decision tree algorithm
was evaluated on the Telemedicine automatic captioning task
developed at the University of Missouri-Columbia. For a
detailed description of this project, please refer to [10]. Speaker
dependent acoustic models were trained for 5 speakers,
including two females (D1 and DS5) and three males (D2, D3,
D4). A summary of the data sets is provided in Table 1. The
training and test datasets were extracted speech data from the
speakers’ conversations with clients in mock Telemedicine
interviews. Along with speech durations, word counts from
transcription texts are also given in Table 1. Speech features
consisted of 39 components including 13 MFCCs and their first
and second order time derivatives. Feature analysis was made at
a 10 ms frame rate with 20 ms window size. Gaussian mixture
density based hidden Markov models (GMM-HMM) were used
for within-word triphone modeling, where each GMM
contained 16 Gaussian components. The task vocabulary is of
the size 46,489, with 3.07% of vocabulary words being medical
terms.

Table 1. Datasets of 5 Speakers: speech(min.)/text(no. of words)

Training set Test set
D1 210/35,348 29.8/5,105
D2 200/39,398 14.3/2,760
D3 145/28,700 19.3/3,238
D4 180/39,148 27.8/6,492
D5 250/44,967 12.1/3,998
Total 985/187561 103.3/21593

5.2. Experimental Results

HMM states were tied using the proposed BTIC based decision
tree procedure (KBA-PDT), where the large corpus for oracle
tree construction contained pooled speech from all the speakers,
and the small corpus for a target tree contained speech of a
single speaker. PDT question set used was the same as the HTK
question set [6]. Prior to building the trees, single Gaussian
acoustic models were first estimated for untied triphone states
and sufficient statistics were accumulated for the oracle and
target trees. The resulting speaker dependent PDTs were then
used to cluster HMM states and construct unseen triphones. At
last, tied single Gaussian models were augmented to 16
components by the HTK splitting procedure. Baseline models
were also trained by using the conventional maximum
likelihood criterion (ML-PDT). The model complexity and
word accuracy results are summarized in Table 2, where the
tuning factors of 4 and y were optimized for each speaker. The
average results were weighted by the relative word counts of the
five test datasets. It is shown that KBA-PDT -consistently
outperformed ML-PDT in increased accuracy (by 0.7%
absolute) and reduced model complexity (by 27% relative).

6. Discussion and Conclusions

In this paper, we presented a novel acoustic modeling approach

Table 2. Effectiveness of knowledge-based adaptive PDT

KBA-PDT ML-PDT

DI Number of states 1611 2238
Word accuracy 81.75 81.17

D2 Number of states 1119 1569
Word accuracy 74.30 73.15

D3 Number of states 799 1156
Word accuracy 74.98 73.95

D4 Number of states 1027 1521
Word accuracy 78.35 77.96

D5 Number of states 1552 1838
Word accuracy 83.55 82.80

W, Avg. Number of states 1240 1700
Word accuracy 79.09 78.39
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using knowledge-based adaptive decision tree state tying. A
Bayesian learning framework for PDT was developed to
incorporate prior knowledge on tree structures, and an oracle-
tree/target-tree process was devised to efficiently search for
optimal splits based on a Bayesian tree information criterion
newly proposed in this work.

It has been shown that the proposed method gives consistent
improvement over conventional methods in model quality and
recognition performance. When tested on the Telemedicine
automatic captioning task, it improved the word error rate by
0.7% (absolute) on average with 27% reduced model
complexity, using optimal settings of training factors for each
speaker.
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