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Abstract
Distributed Speech Recognition involves the development of tech-
niques to conceal the degradations that the transmission channel
introduces in the speech features. This work proposes a low-
complexity high-accuracy error concealment technique compati-
ble with the DSR ETSI standards. This is achieved by combining
three different techniques: fast MMSE estimation, Viterbi decod-
ing with soft-data and subvector-based error detection. We also
propose a method to extend this Viterbi decoding to dynamic fea-
tures. The experimental results show the effectiveness of our pro-
posal.
Index Terms: distributed speech recognition, error concealment,
minimum mean square error estimation, soft-data Viterbi decod-
ing.

1. Introduction
During the last years, distributed speech recognition (DSR) has
aroused a big interest among researchers, developers and manu-
facturers, since it provides an efficient translation of Automatic
Speech Recognition (ASR) technologies to mobile and IP network
applications. DSR has a client/server architecture, where feature
extraction and encoding is carried out by a local front-end and the
speech recognition engine is placed in a remote back-end. In com-
parison with other solutions in which the whole ASR system is em-
bedded in user devices, DSR has clear advantages such as the use
of a thin client, which does not require maintenance by the user,
or language portability. The interest in this new ASR paradigm
has been reflected in the development of four ETSI standards (by
the ETSI Aurora working group) and two RFC documents. The
ETSI standards contain suitable procedures for feature extraction
and compression (to be implemented in the client) and the corre-
sponding feature decoding algorithms. They also describe a suit-
able format for implementation over mobile networks. Payload
formats for implementation over IP networks are described in the
RFC documents.

This work is focussed on the treatment of the errors introduced
in the DSR bitstream during a wireless transmission by means of
error concealment (EC), which is carried out in the back-end. The
goal of EC in DSR is to provide robust and ubiquitous speech
recognition over both circuit- and packet-switched networks. In
this last case we assume that errors in the payload are allowed. The
application of EC to DSR has been recently analyzed in [1], where
several techniques are compared using the GSM EP error patterns
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mulate channel degradation. For the case in which compatibil-
ith the ETSI-DSR standards is required, the highest accuracy
provided by the forward-backward MMSE (FBMMSE) esti-
on that we proposed in [2] (MMSE stands for minimum mean
re error). In particular, for the most degraded condition (EP3
rn), FBMMSE achieves 98.83% of word accuracy, which is

e to the performance in clean conditions (99.04%), while the
ora EC algorithm only achieves 93.40% [3]. The main draw-

of the FBMMSE technique is its high computational cost.

The goal of this work is to propose an EC scheme with the
wing specifications: compatibility with the ETSI-DSR stan-
s, low complexity and high accuracy. In order to achieve these
ctives, we propose the combination of the following tech-
es:

• Step-by-step MMSE (SSMMSE) estimation [3]. This is a
suboptimal version of the FBMMSE estimation which only
requires 6N −2 floating point operations plus an VQ quan-
tization (N is the codebook size) per estimate (FBMMSE
requires 5N2 +5N −2). It introduces a small performance
reduction that will be compensated with the introduction of
the two following techniques.

• Use of soft-data in the Viterbi decoding [4]. The Viterbi
decoder used for recognition can be easily modified to con-
sider the uncertainty inherent in the SSMMSE estimation.
We only have to add the variance of every MMSE estimate
(generated along with the estimate) to the variances of the
HMM gaussians during the Viterbi decoding. The estimate
variances can be considered measures of the estimate reli-
ability and are added to the HMM variances to account for
the unreliability of the estimated features. This missing-
data technique has been successfully applied to static fea-
tures in the aforementioned reference. In our work, we
propose an effective extension of this technique to dynamic
features. The problem of this extension is that these features
are not transmitted, so that the MMSE-based EC algorithm
cannot directly provide any reliability measures for them.
We will introduce a method to obtain the needed reliabil-
ity measures for dynamic features from those of the static
features.

• Subvector-based error detection [1]. The Aurora error de-
tection algorithm detects errors in frame pairs. By means
of subvector error detection, we can detect errors in feature
pairs. Therefore, the limits of an error burst are more pre-
cisely detected, so that we avoid that the SSMMSE-based
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EC procedure unnecessarily degrades features not affected
by the burst.

The rest of the paper is organized as follows. First, we briefly
describe the experimental framework employed in this work. In
section 3 we review how the MMSE estimation can be applied
to obtain the estimates of the received (static) features and their
reliabilities, and how these data can be used by the Viterbi de-
coder used for recognition. Then, we propose a possible solution
for the computation of the reliabilities associated to the dynamic
features. Finally, in section 4 we show the experimental results
obtained over the GSM EP patterns when we apply the aforemen-
tioned techniques plus subvector-based error detection.

2. Experimental framework
2.1. Aurora framework

As we have previously pointed out, one of our premises is to de-
velop an EC scheme fully compatible with the ETSI-DSR front-
ends. Since these standards share the same compression scheme
and we are considering neither acoustic noise nor recognition of
tonal languages, we will only consider the first and simplest stan-
dard [5] (it does not include noise reduction). This front-end pro-
vides a 14-dimension feature vector containing 13 MFCCs (includ-
ing the 0th order one) plus log-Energy. These features are grouped
into pairs and quantized by means of seven Split Vector Quantiz-
ers (SVQ). All codebooks have a 64-center size (6 bits), except the
one for MFCC-0 and log-Energy, which has 256 centers (8 bits).
The bitstream is generated by grouping frames into pairs (88 bits)
that are protected by a 4-bit CRC. At the back-end, error bursts are
detected by means of a CRC checking and a consistency test. The
Aurora mitigation algorithm can be summarized as follows: once
a burst, containing 2B frames, is detected, the first B frames are
substituted by the last correct frame before the burst and the last
B ones by the first correct frame after the burst. In the case of a
burst at the beginning of the utterance, the first correct frame after
the burst is repeated in the degraded frames. A similar solution is
applied for corrupted data at the end of the utterance. The recog-
nizer used along this paper is the one provided by Aurora and uses
eleven 16-state continuous HMM word models, (plus silence and
pause, that have 3 and 1 states, respectively), with 3 gaussians per
state. The training and testing data are extracted from the Aurora-
2 database. Training is performed with 8440 clean sentences and
test is carried out over set A (4004 clean sentences distributed into
4 subsets).

2.2. Transmission scheme

The transmission scheme employed in this work is depicted in Fig-
ure 1. After SVQ quantization, each feature pair is represented
by a vector c (c ∈ {c(i); i = 0, . . . , 2M − 1}) (M=6,8 in this
work) that, after bit mapping, is represented by a bit sequence x =
(x(0), x(1), . . . . . . , x(M −1)) (x ∈ {x(i); i = 0, . . . , 2M −1}),
where each bit is assumed to be bipolar (x(k) ∈ [−1, +1]). This
sequence is transmitted, after channel encoding, through a digital
channel. Every bit of the received bit sequence x̂ is determined
by hard-decision as x̂(k) = sign[y(k)]. Additionally, when an
error burst is detected, MMSE estimation is applied to mitigate the
possible bit errors contained in x̂.

As indicated above, the Aurora mitigation algorithm is suit-
able for bursty channels, and is tested in [6] under GSM error pat-
terns EP1, EP2 and EP3. In this work, we present the final exper-
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Figure 1: Transmission scheme for a feature pair.

tal results on these patterns, but, in order to experiment over
der range of channel conditions, we also consider a simplified
ty channel model whose details can be found in [2].

3. MMSE estimation
FBMMSE estimate [2] of a parameter vector at time t given

bservation sequence X̂T
0 = (x̂0, . . . , x̂T ), where x̂0 and x̂T

he last and first correctly received observations before and af-
n error burst, respectively, can be obtained as,

ĉt = E[ct|X̂T
0 ] =

PN−1
i=0 c(i)γt(i) (0 < t < T ) (1)

γt(i) ≡ P (x
(i)
t |X̂T

0 ) = αt(i)βt(i)/K (2)

re we have introduced the notation x
(i)
t for xt = x(i), and

re K is a normalization factor and αt(i) ≡ P (x
(i)
t |X̂t

0) and

) ≡ P (X̂T
t+1|x(i)

t ) are the forward and backward conditional
abilities, respectively. Probabilities αt(i) and βt(i) can be
ined by means of forward and backward recursions. In order
o this, we can model the signal source by an ergodic hidden
kov model (HMM). In our Aurora-based DSR system, each
M models the generation of a given feature pair. Each state si

e model represents an SVQ codebook center c(i) (or, equiv-
tly, a codeword x(i)). The transition probabilities between

s aij ≡ P (x
(j)
t |x(i)

t−1) can be obtained from a simple anal-
of the training data. The observation probabilities, defined as
) ≡ P (x̂|x(i)), can easily be computed from the Hamming

nce between x̂ and x(i) and considering an estimate of the
age bit error probability pe of the channel (see reference [2]
etails).
The SSMMSE estimation is an approximation of FBMMSE
can be summarized as follows [3]:

. The considered error burst of length 2B = T − 1 is split in
two halves of length B.

. Processing of the first half: at every time step (t =
1, . . . , B), the following estimate is computed,

ĉt = E[ct|ĉt−1, x̂t] =
PN−1

i=0 c(i)α̃t(i) (3)

α̃t(i) = P (x
(i)
t |ĉt−1, x̂t) ≈ Caφ(ĉt−1),ibi(x̂t) (4)

where C is a normalization constant, φ(c) is the index
corresponding to the nearest SVQ center to vector c and
aφ(ĉt−1),i is the transition probability from state sφ(ĉt−1)

to state si.



3. Processing of the second half: the same as for the first half
but backwards (t = 2B, . . . , B + 1) instead of forwards.

As equation (3) indicates, the SSMMSE estimation uses the esti-
mate of the previous step as if it was fully reliable. Thus, it avoids
the high computational burden involved by the forward and back-
ward recursions required for FBMMSE.

4. Soft-data Viterbi decoding
Although the MMSE estimation techniques previously presented
are a powerful tool for EC, we must take into account that the re-
sulting estimates are not fully reliable. We can consider that the
estimate has an evidence pdf associated, that is, we are dealing
with soft-data rather than the usual deterministic data. It has been
shown that the Viterbi decoding carried out for recognition can be
modified to account for this unreliability [7]. If the gaussian mix-
tures employed by the recognition HMMs have diagonal covari-
ance matrices and the evidence pdf is gaussian, then the modifica-
tion of the Viterbi decoder is especially simple: for a given feature
x, the corresponding variance of every HMM gaussian must be in-
creased by the variance σ2

x,t of the evidence pdf associated to the
feature MMSE estimate xt. The remaining problem is to obtain
these evidence variances. We have seen in the previous section
that, in general, the MMSE estimation provides feature estimates
which are computed as expected values,

x̂t = E[xt|available data] (5)

Then, its corresponding evidence variance can be computed as,

σ2
x,t = E[(xt − x̂t)

2|av. data] = E[x2
t |av. data] − x̂2

t (6)

This soft-data approach has an important drawback. It can di-
rectly be applied to static features. However, since the dynamic
features are not transmitted, we do not have a direct form to com-
pute their evidence variances. Then, they must be obtained from
the only reliability information available at the receiver, that is,
that of the static features. Therefore, if a dynamic feature Δxt is
computed as a weighted sum,

Δxt =

MX
k=−M

wkxt+k (7)

then, its corresponding evidence variance can be obtained as,

σ2
Δx,t = V AR

"
MX

k=−M

wkxt+k

#
(8)

=

MX
k=−M

MX
j=−M

wkwjCOV [xt+k, xt+j ] (9)

We see that this result does not fit our goal of low complex-
ity due to the huge amount of computation that involved by the
cross-covariances contained in the previous expression. In order
to solve this problem, we can assume that the random variables
xt+k (−M ≤ k ≤ M ) involved in equation (9) are independent.
Then, all the terms with k �= j become zero, so eqn. (9) can be
written as,

σ2
Δx,t ≈

MX
k=−M

w2
kV AR[xt+k] =

MX
k=−M

w2
kσ2

x,t+k (10)
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Figure 2: DSR performance over a bursty channel.

h only requires the evidence variances of the static features
puted in equation (6).

The assumption of statistical independence for static features
bviously not true. However, this does not mean that the ap-
imation of equation (10) is not useful. In figure 2, we com-
the performance of the original SSMMSE method, SSMMSE
soft-data Viterbi decoding (SSMMSE SD) applying equation
and SSMMSE plus soft-data Viterbi decoding only applied to
tatic features (SSMMSE SD STAT). In this last case, the evi-
e variances of the dynamic features are set to zero. These ex-

ments have been performed over a bursty channel with differ-
verage SNRs. We can see that the soft-data approach applied
l features (experiment SSMMSE SD) clearly outperforms SS-
SE and SSMMSE SD STAT.

As previously shown, the SSMMSE method is an approxima-
of FBMMSE where at every time step we consider the es-
te obtained in the previous step as fully reliable. Since this
t true, we can expect that the reliability of the SSMMSE esti-
s decreases towards the center of the error burst. Equivalently,
an say that the evidence variances increase towards the center
e burst. We can take into account this fact by performing the
wing postprocessing to the static evidence variances,

σ2
x,t ← max

`
σ2

x,t, σ
2
x,t−1

´
(11)

ensures that the evidence variance increases monotonically
rds the center of the burst. The performance of this variance
processing (plus the computation of σ2

Δx,t proposed in equa-
(10)) corresponds to experiment SSMMSE SDmax in figure
is shown that SSMMSE SDmax provides the best results.

In figure 3 we present a comparison of the original Aurora EC
rithm with the original FBMMSE and SSMMSE techniques
with FBMMSE and SSMMSE plus soft-data Viterbi decoding
eriments FBMMSE SD and SSMMSE SDmax, respectively).
shown that soft-data Viterbi decoding is useful for both FB-
SE and SSMMSE, although the improvement is much more
ceable for SSMMSE. We will see in the next section how we
further improve the SSMMSE-based methods in order to ap-
imate the performance of those based on FBMMSE.
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Figure 3: DSR performance over a bursty channel.

5. Experimental results over the GSM EP
patterns

The three GSM EPx error patterns (x=1,2,3) have become quite
standard to measure the robustness of DSR systems over wire-
less channels. They are bit error masks that are directly applied
to the DSR bitstream by means of a XOR operation, and repre-
sent three different channel conditions of the GSM traffic channel
(BER=0.00%,1.76%,3.48%). The results of the Aurora, FBMMSE
and SSMMSE error concealment algorithms with hard- and soft-
data Viterbi decoding are presented in table 1. We will pay more
attention to the results over EP3, where we find more diffences.
The most noticeable result is that SSMMSE with soft-data Viterbi
decoding achieves almost 98% of word accuracy.

In order to obtain a further improvement of this result, we have
also introduced the subvector-based error detection proposed in
[1]. The Aurora standard can only discriminate whether a given
frame pair is correct or not. However, once a frame pair is de-
tected as erroneous, we can refine the localization of the errors by
means of the same consistency test used in the Aurora standard.
The Aurora consistency test determines the degree of continuity
between the frames contained in a frame pair. This is carried out
in two steps: 1) for every two consecutive feature pair subvectors
(at times t and t + 1) we check whether the two features of that
feature pair do not sharply change from time t to t + 1, and 2) a
voting algorithm is applied to the 6 feature pairs to finally decide
whether the frame pair is consistent or not. The subvector-based
error detection avoids this second step and declares as erroneous
only those feature pairs which are not consistent.

Table 2 presents the same techniques as table 1 but introducing
subvector-based error detection. We can extract three interesting
conclusions. First, the performance of the Aurora EC algorithm
is clearly increased. Second, the performance of the FBMMSE
technique is damaged by the subvector-based error detection. A
possible explanation for this behavior is that, unlike Aurora or SS-
MMSE, the FBMMSE technique provides very good results even
for long error bursts. Then, it is preferable to mitigate long but
well detected bursts than shorter but erroneously detected bursts.
Finally, the most important result is that SSMMSE approximates
the performance of FBMMSE.
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Hard Data Soft Data
ethod EP1 EP2 EP3 EP1 EP2 EP3

RORA 99.04 98.94 93.40 - - -
MMSE 99.04 99.02 98.83 99.04 99.02 98.80
MMSE 99.04 99.00 97.55 99.04 99.00 97.98

e 1: Word accuracies achieved by Aurora, FBMMSE and SS-
SE with hard- and soft-data Viterbi decoding over the GSM
rrors patterns.

Hard Data Soft Data
ethod EP1 EP2 EP3 EP1 EP2 EP3

RORA 99.04 99.00 97.74 - - -
MMSE 99.04 99.02 98.48 99.04 99.02 98.71
MMSE 99.04 99.01 98.11 99.04 99.02 98.52

e 2: Word accuracies achieved by Aurora, FBMMSE and SS-
SE with hard- and soft-data Viterbi decoding over the GSM
rrors patterns using subvector error detection.

6. Conclusions
is work we have searched for an error concealment algorithm
SR with three constraints: compatibility with the ETSI DSR

dards, low complexity and high accuracy. This objective has
achieved by combining three different and complementary

niques: step-by-step MMSE estimation, Viterbi decoding with
data and subvector-based error detection. In particular, we
proposed a procedure to extend the Viterbi decoding with

data to dynamic features with a very low computational cost.
ave shown that this extension is very effective when combined
step-by-step MMSE estimation.
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