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Abstract

We consider DFT based techniques for single-channel speech en-
hancement. Specifically, we derive minimum mean-square error
estimators of clean speech DFT coefficients based on generalized
gamma prior probability density functions. Our estimators con-
tain as special cases the well-known Wiener estimator and the
more recently derived estimators based on Laplacian and two-
sided gamma priors. Simulation experiments with speech signals
degraded by various additive noise sources verify that the estimator
based on the two-sided gamma prior is close to optimal amongst
all the estimators considered in this paper.

Index Terms: DFT based speech enhancement, minimum mean-
square error estimation, generalized gamma priors.

1. Introduction

Single-channel speech enhancement methods based on the dis-
crete Fourier transform (DFT) have received significant interest
due to their low complexity and relatively good performance, e.g.
[1, 2, 3, 4, 5]. Assuming that the noise process is additive and
that noise and speech signals are independent, these methods gen-
erally estimate either the noise-free complex-valued DFT coeffi-
cients, e.g. [4], or the magnitudes of the DFT coefficients [2, 3].
The DFT based methods differ in their statistical assumptions re-
garding the speech and noise DFT coefficients; speech has tradi-
tionally been assumed Gaussian, e.g. [2], but more recently esti-
mators based on supergaussian speech assumptions have been de-
rived, see e.g. [4, 3]. Similarly, the noise is most often assumed
Gaussian, but estimators exist which assume the noise to be super-
gaussian distributed [4]. Finally, existing methods differ in their
objective; most methods rely on the minimum mean-square error
(MMSE) criterion [2, 4], but sometimes simpler estimators can be
found with the maximum a posteriori (MAP) criterion, e.g. [3].
We focus on MMSE estimators of complex-valued speech
DFT coefficients and generalize the results of Martin [4]. We as-
sume that noise DFT coefficients are Gaussian distributed, and that
the real and imaginary parts of the speech DFT coefficients are
statistically independent and distributed according to a two-sided
generalized gamma prior density of the following form

8"
2T (v)

fsr(sr) = k""" exp(—Bsr|"), €]
where 5 > 0,7 > 0,v > 0,—0c0 < sgr < o0, and where the
random variable Sr represents the real part of a complex-valued

DFT coefficient; a similar equation holds for the imaginary part.

We derive MMSE estimators for the cases where v = 1 and
v = 2. Since the prior fs,(sr) (and fs,(sr)) in this case is
parameterized by [ and v, the resulting estimators are also func-
tions of these parameters. Certain parameter choices lead to priors
for which MMSE estimators are already known. Specifically, with
~ = 1, the prior in Eq. (1) has as special cases both the Laplace
and Gamma densities for which MMSE estimators are presented
in [4]. Further, for v = 2, the Gaussian density occurs as a special
case, and the well-known Wiener estimator [6] is MMSE optimal.

2. MMSE Estimation of DFT Coefficients
We consider a signal model of the form
X (k,m) = S(k,m) + W (k,m),

where X (k,m),S(k, m), W(k, m) are complex random vari-
ables representing the DFT coefficients in signal frame m at fre-
quency index k of the noisy, clean, and noise signal, respectively.
Assuming that S(k, m) and W (k, m) are statistically independent
across time and frequency and from each other, the resulting esti-
mators are also time/frequency independent. Thus, we drop the
time/frequency indices and introduce the following notation of the
real and imaginary parts of the random variables in question

X=5+W,

with X = Xg +jX[, S = Skgr +jSI, and W = Wgr +jW1. It
is well-known that the MMSE estimator of the clean speech DFT
coefficient S is identical to the conditional mean E{S|z}'[7]. As
in [4] we assume that the real and imaginary parts of S, Sg and
S, are statistically independent, from which it follows that

E{S|:C} = E{SR mR} +jE{S]|.%‘[}.

We now consider estimation of Sr; a similar procedure applies
for S;. Using Bayes’ formula we find

o sRIx 155 (@RISR) 55 (sR)dsR

Jop Ixnisp(@rlsr) fsp(sr)dsr

FE {S R | T R} =
From the Gaussian noise assumption it follows that

fxpisg(@®r|SR) = \/_% eXp(—%(mR —sr)%). 3)

2oy, Wr
where J‘Q,VR is the variance of Wr. From the assumption that Wr
and Wy are independent it follows that U‘Q/VR = U%VI = U‘Q/V/Q.
Similar results hold for the speech DFT coefficient S.

'Lower-case z represents a realization of the random variable X .
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2.1. TheCasey =1
With v = 1 the prior density is of the form

v

sl (Bl @

Jsr(sr) =

Choosing v = 1/2 leads to the two-sided gamma density, while
v = 1 results in a Laplacian density. MMSE estimators for these
two special case were presented in [4].

Inserting Egs. (3) and (4) in Eq. (2) it can be shown (see [8]
for details) that the numerator in Eq. (2) is given by

/ Srfxpisp(TRlSR) fsp(sr)dsr =
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and the denominator is given by
/ fxrisg(TrISR) fsp(sr)dsr =
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where we introduced k = (2o, ) 387 0y eXP(—5,9—)
W

In order to find analytical expressions for the 1ntegra11; in Egs.
(5) and (6) we use [9, Thm. 3.462.1]

/ v Lexp(—By® — 'y)dy =

’ / 2 N (7)
N—v'/2

(28) ™ L) exp( L) D (—Tﬁ,) ,

where 3 > 0,/ > 0, and D, (-) is a parabolic cylinder function
of order /. Applying this theorem to Egs. (5) and (6), and using
that 3 is related to o3 . , the variance of S, as 3° = O’;; (v+1)v,
we can write the conditional mean E{Sgr|zr} as

E{Sg|zr} =

exp(3a2)D_ 41y (=) — exp(33)D_(yin) (@)
exp(3a2) D, (2-) + exp(13) Do ()

(TWRI/

where x_ and x4 are given by

gy = Wr viv+1)+
oSk OWg

TR

2
We note that WR = .fj’% , where £ £ Z& is the a priori SNR [2].
SR Tw

2.2. The Casey =2

When v = 2 in Eq. (1) we get
ﬁl/

I'(v)

fsr(sr) = 2L exp(—Blsr|?), (8)

sk

Figure 1: Prior densities fsp(sr) for v = 1 with v =
{0.25,0.50,0.75, 1.0} (normalized to unit variance).

with 3 > 0,v > 0, and —c0 < sr < oo. We follow a simi-
lar strategy as before: Eqgs. (8) and (3) are inserted in Eq. (2) and
the resulting integrals are solved using the expression in (7). This
leads to the following analytical expression for the MMSE estima-
tor (again, we refer to [8] for details):

D_gpyy(z-) = D_(2pq1y(—2-)
D*QV(mf)JerQll(ixf) ’

E{SR|1‘R} = QVJWRLR

where x_ can be written as

1

T_ = — TR Lr, and Lr = (1+21/£_1)_2 .
OWg

2.3. Input-Output Characteristics of Estimators

In this section we study the input-output characteristics of the de-
rived estimators. For the case of v = 1 we consider the following
v values: v = {0.25,0.50, 0.75, 1}. The resulting prior densities
fsr (sr) are shown in Fig. 1 (3 is chosen such that the variance
of Sr equals one). For v = 1.0 we get a Laplacian (two-sided ex-
ponential) prior and for v = 0.5 the two-sided gamma distribution
occurs. Fig. 3A shows examples of input-output characteristics for
the corresponding MMSE estimators. For high a priori SNRs, the
relation between zr and the estimator E{Sg|zr} is almost lin-
ear. At low a priori SNRs, the relation is non-linear, especially for
small values of v, i.e., more peaked priors.

For the v = 2 case we consider v = {0.1,0.2,0.3,0.5}. Fig.
2 shows the corresponding normalized prior densities. Choosing
v = 0.5 gives a Gaussian prior, while lower values of v give more
peaked distributions®. Fig. 3B shows input-output characteristics
for the resulting MMSE estimators. For v = 0.5 the Wiener esti-
mator occurs (solid line in Fig. 3B). For all other choices of v, the
estimators are non-linear in the noisy observation x r.

3. Simulation Results

We study the performance of the derived estimators in simulation
experiments with noisy speech signals sampled at 8 kHz. The sig-
nals are taken from the Noizeus speech corpus [10] which consists

2In principle, the derived estimators remain valid for v > 1.0 fory = 1
and v > 0.5 for v = 2. In this case, however, the priors become bimodal.
‘We have therefore chosen to restrict v to therange 0 < v < 1.0fory =1
and 0 < v < 0.5 fory = 2.
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Figure 2: Prior densities fs,(sr) for v 2 with v

{0.1,0.2,0.3,0.5} (normalized to unit variance).
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Figure 3: Input-output characteristics for ¢ = —5dB and £ = 5
witho% + 0% =2. A)y=1,B)v=2.

of 30 speech signals, of roughly 3 seconds each, contaminated by
various additive noise sources. We included signals contaminated
by additive white Gaussian noise, since this noise condition was
not present in the data base. The noisy speech signals were di-
vided into segments of 256 samples with an overlap of 50% and
transformed to the spectral domain using an FFT. After applying
the derived gain functions to the noisy FFT coefficients, the en-
hanced signal segments were generated using an inverse FFT and
overlap-added to form an enhanced waveform. To track the noise
power spectral density we used the minimum statistics estimator
[11]. The a priori SNR £ was estimated using the decision-directed
approach [2] with a fixed smoothing factor of v = 0.98, and we
limited the maximum suppression to 0.1.

We adopt the procedure of [3] to quantify the performance of
the estimators in terms of speech distortion and noise reduction
(although, to the authors knowledge, it has not been established
to which extent this procedure correlates with subjective evalua-
tions). Define the segmental speech SNR, as

2
( ”Sp”? ) [dB],

sy — 85ll5

1
SNR-S = — 10 -log,
Pl
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Figure 4: SNR-S vs. SNR-N for v = 1 (solid line) and v = 2
(dashed line) for white noise. The special cases that correspond to
the Gamma, Laplace and Gaussian priors are indicated by +,
and X, respectively. A) Input SNR = 0 dB, B) SNR = 5 dB, C) SNR
=10dB, D) SNR = 15 dB.

where the vector s, represents a clean speech (time-domain) seg-

ment and sy, is the result of applying the gain functions to the clean

speech segment®. To discard non-speech segments, let P be an in-

dex set of clean signal segments with energy larger than a thresh-

old. More specifically, P is given by P = {p : 10log,, ||sp |3 +

30 > max10-log,,(||sp||3)}. i.e., segments with energy within 30
P

dB of the maximum segment energy in a particular speech signal.
Similarly, we measure the segmental noise reduction using

(fues) el

where w,, is the p’th noise segment, and W, is the residual noise
segment resulting from applying the noise suppression filter to w,.

Fig. 4 plots SNR-S vs. SNR-N for the derived estimators for
different values of v for white noise. Clearly, the estimator based
on the two-sided gamma prior (+) gives relatively low speech dis-
tortions (high SNR-S) for a given residual noise level. Further,
the Wiener estimator (x) provides the weakest SNR-S vs. SNR-N
tradeoff in the v = 2 class of estimators. However, choosing low
v values in the v = 2 class leads to estimators with performance
close to that of estimators in the v = 1 class®.

Define the segmental SNR (SNR,) as

1 &
SNRyg = Mor [10 -log,, ( )] [dB],
p=1

where S, is an enhanced signal segment, P is the total num-
ber of segments in the speech corpus, and the function T'[y] =
max(min(y, 35), —10) clips per-segment SNRs to the range -10

— 35 dB. Fig. 5 shows the segmental SNR of the enhanced signals
as a function of v for different input SNRs for street noise (Figs.

A
[1W5l13

P
1
SNR-N = — > 10 - logy,
|P| peEP

lIsell2

llsp — 815

3Clearly, this is only possible since the noisy signals are mixed synthet-
ically, i.e., we have the clean signals available.

4When v/¢ is small and xR /owp, is not, the estimators for v = 1 and
~ = 2 are approximately equal when v is the same.
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Figure 5: Performance in terms of SNRye, vs. v for v = 1 (solid
line) and ~v = 2 (dashed line). A) Street noise at input SNR=5 dB.
B) Street noise, SNR=15 dB. C) White noise, SNR=5 dB. D) White
noise, SNR=15 dB.

5A-B) and white noise (Figs. 5C-D). We see that the estimators
based on a Laplacian (*) or Gamma (+) prior both perform well
and that the performance of estimators with v = 1 is relatively
insensitive to the choice of v. For v = 2, choosing v ~ 0.1 — 0.2
leads to good performance, while v = 0.5, i.e. the Wiener esti-
mator (), leads to the poorest performance in the v = 2 class of
estimators.

Finally, we evaluate the quality of the enhanced signals using
PESQ [12] for different estimators, SNRs and noise sources, see
Fig. 6. Whereas the v = 1 based estimators are rather insensitive
to the choice of v, we see, as before, that lower values of v lead to
better performance when v = 2. Interestingly, the PESQ curves in
Fig. 6 are very similar in shape to the SNRy curves in Fig. 5.

4. Concluding Remarks

This paper considered DFT based techniques for single channel
speech enhancement. Specifically, we extended existing MMSE
estimators by deriving two classes of estimators based on gener-
alized gamma prior pdfs. Estimators from the class where v = 1
typically perform better than the v = 2 class, except for very small
values of the parameter v, where the estimators are very similar. A
complex Gaussian model assumption for the complex speech DFT
coefficients clearly does not perform well.
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