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Abstract
We consider DFT based techniques for single-channel speech en-
hancement. Specifically, we derive minimum mean-square error
estimators of clean speech DFT coefficients based on generalized
gamma prior probability density functions. Our estimators con-
tain as special cases the well-known Wiener estimator and the
more recently derived estimators based on Laplacian and two-
sided gamma priors. Simulation experiments with speech signals
degraded by various additive noise sources verify that the estimator
based on the two-sided gamma prior is close to optimal amongst
all the estimators considered in this paper.

Index Terms: DFT based speech enhancement, minimum mean-
square error estimation, generalized gamma priors.

1. Introduction
Single-channel speech enhancement methods based on the dis-
crete Fourier transform (DFT) have received significant interest
due to their low complexity and relatively good performance, e.g.
[1, 2, 3, 4, 5]. Assuming that the noise process is additive and
that noise and speech signals are independent, these methods gen-
erally estimate either the noise-free complex-valued DFT coeffi-
cients, e.g. [4], or the magnitudes of the DFT coefficients [2, 3].
The DFT based methods differ in their statistical assumptions re-
garding the speech and noise DFT coefficients; speech has tradi-
tionally been assumed Gaussian, e.g. [2], but more recently esti-
mators based on supergaussian speech assumptions have been de-
rived, see e.g. [4, 3]. Similarly, the noise is most often assumed
Gaussian, but estimators exist which assume the noise to be super-
gaussian distributed [4]. Finally, existing methods differ in their
objective; most methods rely on the minimum mean-square error
(MMSE) criterion [2, 4], but sometimes simpler estimators can be
found with the maximum a posteriori (MAP) criterion, e.g. [3].

We focus on MMSE estimators of complex-valued speech
DFT coefficients and generalize the results of Martin [4]. We as-
sume that noise DFT coefficients are Gaussian distributed, and that
the real and imaginary parts of the speech DFT coefficients are
statistically independent and distributed according to a two-sided
generalized gamma prior density of the following form

fSR
(sR) =

γβν

2Γ(ν)
|sR|γν−1 exp(−β|sR|γ), (1)

where β > 0, γ > 0, ν > 0,−∞ < sR < ∞, and where the
random variable SR represents the real part of a complex-valued
DFT coefficient; a similar equation holds for the imaginary part.
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We derive MMSE estimators for the cases where γ = 1 and
2. Since the prior fSR

(sR) (and fSI
(sI)) in this case is

meterized by β and ν, the resulting estimators are also func-
s of these parameters. Certain parameter choices lead to priors

hich MMSE estimators are already known. Specifically, with
1, the prior in Eq. (1) has as special cases both the Laplace

Gamma densities for which MMSE estimators are presented
]. Further, for γ = 2, the Gaussian density occurs as a special
, and the well-known Wiener estimator [6] is MMSE optimal.

. MMSE Estimation of DFT Coefficients
consider a signal model of the form

X(k, m) = S(k, m) + W (k,m),

re X(k, m), S(k, m),W (k, m) are complex random vari-
s representing the DFT coefficients in signal frame m at fre-
cy index k of the noisy, clean, and noise signal, respectively.
ming that S(k, m) and W (k,m) are statistically independent

ss time and frequency and from each other, the resulting esti-
rs are also time/frequency independent. Thus, we drop the
/frequency indices and introduce the following notation of the
and imaginary parts of the random variables in question

X = S + W,

X = XR + jXI , S = SR + jSI , and W = WR + jWI . It
ell-known that the MMSE estimator of the clean speech DFT
ficient S is identical to the conditional mean E{S|x}1[7]. As
] we assume that the real and imaginary parts of S, SR and

are statistically independent, from which it follows that

E{S|x} = E{SR|xR} + jE{SI |xI}.
now consider estimation of SR; a similar procedure applies
I . Using Bayes’ formula we find

E{SR|xR} =

R
sR

sRfXR|SR
(xR|sR)fSR

(sR)dsRR
sR

fXR|SR
(xR|sR)fSR

(sR)dsR
. (2)

the Gaussian noise assumption it follows that

R|SR
(xR|sR) =

1√
2πσ2

WR

exp(− 1

2σ2
WR

(xR − sR)2). (3)

re σ2
WR

is the variance of WR. From the assumption that WR

WI are independent it follows that σ2
WR

= σ2
WI

= σ2
W /2.

ilar results hold for the speech DFT coefficient S.

Lower-case x represents a realization of the random variable X.
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2.1. The Case γ = 1

With γ = 1 the prior density is of the form

fSR
(sR) =

βν

2Γ(ν)
|sR|ν−1 exp(−β|sR|), (4)

Choosing ν = 1/2 leads to the two-sided gamma density, while
ν = 1 results in a Laplacian density. MMSE estimators for these
two special case were presented in [4].

Inserting Eqs. (3) and (4) in Eq. (2) it can be shown (see [8]
for details) that the numerator in Eq. (2) is given by

Z
sR

sRfXR|SR
(xR|sR)fSR

(sR)dsR =

k × (

Z ∞

0

sν
R exp(− s2

R

2σ2
WR

− sR(β − xR

σ2
WR

))dsR−
Z ∞

0

sν
R exp(− s2

R

2σ2
WR

− sR(β +
xR

σ2
WR

))dsR

´
,

(5)

and the denominator is given by
Z

sR

fXR|SR
(xR|sR)fSR

(sR)dsR =

k × (

Z ∞

0

sν−1
R exp(− s2

R

2σ2
WR

− s(β − xR

σ2
WR

))dsR+

Z ∞

0

sν−1
R exp(− s2

R

2σ2
WR

− sR(β +
xR

σ2
WR

))dsR),

(6)

where we introduced k = (2πσ2
WR

)−
1

2
βν

2Γ(ν)
exp(− x2

R

2σ2

WR

).

In order to find analytical expressions for the integrals in Eqs.
(5) and (6) we use [9, Thm. 3.462.1]

Z ∞

0

yν′−1 exp(−β′y2 − γ′y)dy =

(2β′)−ν′/2Γ(ν′) exp(
γ′2

8β′
)D−ν′

„
γ′

√
2β′

«
,

(7)

where β′ > 0, ν′ > 0, and Dν′ (·) is a parabolic cylinder function
of order ν′. Applying this theorem to Eqs. (5) and (6), and using
that β is related to σ2

SR
, the variance of SR, as β2 = σ−2

SR
(ν+1)ν,

we can write the conditional mean E{SR|xR} as

E{SR|xR} =

σWR
ν

exp( 1
4
x2
−)D−(ν+1)(x−) − exp( 1

4
x2

+)D−(ν+1)(x+)

exp( 1
4
x2
−)D−ν(x−) + exp( 1

4
x2

+)D−ν(x+)
,

where x− and x+ are given by

x± =
σWR

σSR

p
ν(ν + 1) ± xR

σWR

.

We note that
σWR

σSR

= ξ−
1

2 , where ξ �
σ2

S

σ2

W

is the a priori SNR [2].

2.2. The Case γ = 2

When γ = 2 in Eq. (1) we get

fSR
(sR) =

βν

Γ(ν)
|sR|2ν−1 exp(−β|sR|2), (8)
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re 1: Prior densities fSR
(sR) for γ = 1 with ν =

5, 0.50, 0.75, 1.0} (normalized to unit variance).

β > 0, ν > 0, and −∞ < sR < ∞. We follow a simi-
trategy as before: Eqs. (8) and (3) are inserted in Eq. (2) and
esulting integrals are solved using the expression in (7). This
s to the following analytical expression for the MMSE estima-
again, we refer to [8] for details):

SR|xR} = 2νσWR
LR

D−(2ν+1)(x−) − D−(2ν+1)(−x−)

D−2ν(x−) + D−2ν(−x−)
,

re x− can be written as

x− = − xR

σWR

LR, and LR =
`
1 + 2νξ−1

´− 1

2 .

Input-Output Characteristics of Estimators

is section we study the input-output characteristics of the de-
d estimators. For the case of γ = 1 we consider the following
lues: ν = {0.25, 0.50, 0.75, 1}. The resulting prior densities
(sR) are shown in Fig. 1 (β is chosen such that the variance
R equals one). For ν = 1.0 we get a Laplacian (two-sided ex-
ntial) prior and for ν = 0.5 the two-sided gamma distribution
rs. Fig. 3A shows examples of input-output characteristics for
orresponding MMSE estimators. For high a priori SNRs, the
ion between xR and the estimator E{SR|xR} is almost lin-
At low a priori SNRs, the relation is non-linear, especially for
ll values of ν, i.e., more peaked priors.
For the γ = 2 case we consider ν = {0.1, 0.2, 0.3, 0.5}. Fig.
ows the corresponding normalized prior densities. Choosing
0.5 gives a Gaussian prior, while lower values of ν give more
ed distributions2. Fig. 3B shows input-output characteristics
he resulting MMSE estimators. For ν = 0.5 the Wiener esti-
r occurs (solid line in Fig. 3B). For all other choices of ν, the
ators are non-linear in the noisy observation xR.

3. Simulation Results
study the performance of the derived estimators in simulation
riments with noisy speech signals sampled at 8 kHz. The sig-
are taken from the Noizeus speech corpus [10] which consists

In principle, the derived estimators remain valid for ν > 1.0 for γ = 1

ν > 0.5 for γ = 2. In this case, however, the priors become bimodal.
ave therefore chosen to restrict ν to the range 0 < ν ≤ 1.0 for γ = 1

0 < ν ≤ 0.5 for γ = 2.
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Figure 2: Prior densities fSR
(sR) for γ = 2 with ν =

{0.1, 0.2, 0.3, 0.5} (normalized to unit variance).
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Figure 3: Input-output characteristics for ξ = −5 dB and ξ = 5
with σ2

S + σ2
W = 2. A) γ = 1, B) γ = 2.

of 30 speech signals, of roughly 3 seconds each, contaminated by
various additive noise sources. We included signals contaminated
by additive white Gaussian noise, since this noise condition was
not present in the data base. The noisy speech signals were di-
vided into segments of 256 samples with an overlap of 50% and
transformed to the spectral domain using an FFT. After applying
the derived gain functions to the noisy FFT coefficients, the en-
hanced signal segments were generated using an inverse FFT and
overlap-added to form an enhanced waveform. To track the noise
power spectral density we used the minimum statistics estimator
[11]. The a priori SNR ξ was estimated using the decision-directed
approach [2] with a fixed smoothing factor of α = 0.98, and we
limited the maximum suppression to 0.1.

We adopt the procedure of [3] to quantify the performance of
the estimators in terms of speech distortion and noise reduction
(although, to the authors knowledge, it has not been established
to which extent this procedure correlates with subjective evalua-
tions). Define the segmental speech SNR, as

SNR-S =
1

|P|
X
p∈P

10 · log10

„ ‖sp‖2
2

‖sp − s̃p‖2
2

«
[dB],

S
N

R
−

S
 (

dB
)

S
N

R
−

S
 (

dB
)
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re 4: SNR-S vs. SNR-N for γ = 1 (solid line) and γ = 2
hed line) for white noise. The special cases that correspond to
Gamma, Laplace and Gaussian priors are indicated by +, ∗
×, respectively. A) Input SNR = 0 dB, B) SNR = 5 dB, C) SNR
dB, D) SNR = 15 dB.

re the vector sp represents a clean speech (time-domain) seg-
t and s̃p is the result of applying the gain functions to the clean
ch segment3. To discard non-speech segments, let P be an in-
set of clean signal segments with energy larger than a thresh-
More specifically, P is given by P = {p : 10 log10 ‖sp‖2

2 +
max

p
10·log10(‖sp‖2

2)}, i.e., segments with energy within 30

f the maximum segment energy in a particular speech signal.
ilarly, we measure the segmental noise reduction using

SNR-N =
1

|P|
PX

p∈P

10 · log10

„‖wp‖2
2

‖w̃p‖2
2

«
[dB],

re wp is the p’th noise segment, and w̃p is the residual noise
ent resulting from applying the noise suppression filter to wp.

Fig. 4 plots SNR-S vs. SNR-N for the derived estimators for
rent values of ν for white noise. Clearly, the estimator based

he two-sided gamma prior (+) gives relatively low speech dis-
ons (high SNR-S) for a given residual noise level. Further,

iener estimator (×) provides the weakest SNR-S vs. SNR-N
eoff in the γ = 2 class of estimators. However, choosing low
lues in the γ = 2 class leads to estimators with performance
e to that of estimators in the γ = 1 class4.
Define the segmental SNR (SNRseg) as

SNRseg =
1

P

PX
p=1

T

»
10 · log10

„ ‖sp‖2
2

‖sp − ŝp‖2
2

«–
[dB],

re ŝp is an enhanced signal segment, P is the total num-
of segments in the speech corpus, and the function T [y] =
(min(y, 35),−10) clips per-segment SNRs to the range -10
dB. Fig. 5 shows the segmental SNR of the enhanced signals
function of ν for different input SNRs for street noise (Figs.

Clearly, this is only possible since the noisy signals are mixed synthet-
, i.e., we have the clean signals available.

When ν/ξ is small and xR/σWR
is not, the estimators for γ = 1 and

2 are approximately equal when γν is the same.
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Figure 5: Performance in terms of SNRseg vs. ν for γ = 1 (solid
line) and γ = 2 (dashed line). A) Street noise at input SNR=5 dB.
B) Street noise, SNR=15 dB. C) White noise, SNR=5 dB. D) White
noise, SNR=15 dB.

5A–B) and white noise (Figs. 5C–D). We see that the estimators
based on a Laplacian (∗) or Gamma (+) prior both perform well
and that the performance of estimators with γ = 1 is relatively
insensitive to the choice of ν. For γ = 2, choosing ν ≈ 0.1 − 0.2
leads to good performance, while ν = 0.5, i.e. the Wiener esti-
mator (×), leads to the poorest performance in the γ = 2 class of
estimators.

Finally, we evaluate the quality of the enhanced signals using
PESQ [12] for different estimators, SNRs and noise sources, see
Fig. 6. Whereas the γ = 1 based estimators are rather insensitive
to the choice of ν, we see, as before, that lower values of ν lead to
better performance when γ = 2. Interestingly, the PESQ curves in
Fig. 6 are very similar in shape to the SNRseg curves in Fig. 5.

4. Concluding Remarks
This paper considered DFT based techniques for single channel
speech enhancement. Specifically, we extended existing MMSE
estimators by deriving two classes of estimators based on gener-
alized gamma prior pdfs. Estimators from the class where γ = 1
typically perform better than the γ = 2 class, except for very small
values of the parameter ν, where the estimators are very similar. A
complex Gaussian model assumption for the complex speech DFT
coefficients clearly does not perform well.
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