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Abstract

A Conditional Random Field is a mathematical model for se-
quences that is similar in many ways to a Hidden Markov Model,
but is discriminative rather than generative in nature. In this pa-
per, we explore the application of the CRF model to ASR pro-
cessing of discriminative phonetic features by building a system
that performs first-pass phonetic recognition using discrimina-
tively trained phonetic features. With this system, we show that
this CRF model achieves an accuracy level in a phone recognition
task that is superior to a similarly trained HMM model.
Index Terms: speech recognition, conditional random fields.

1. Introduction
In recent years, attempts have been made to incorporate features
determined from a speech signal via discriminative methods into
the Automatic Speech Recognition (ASR) process. These attempts
have led to systems like Tandem systems [1] where individual fea-
tures are extracted from the speech signal using a neural network,
then used as inputs into a traditional HMM system.

Models based around the framework of maximum entropy
have shown successful results in various areas of discriminative
modeling, including part of speech tagging [2], information ex-
traction [3], and statistical language modeling [4]. In ASR, the
maximum entropy principle has been used to discriminatively train
Gaussian-based systems [5], combining phonetic landmark esti-
mates in lattice rescoring [6], and for performing score combina-
tion on the acoustic, segmental and word levels [7].

More recently, the concept of maximum entropy modeling has
been extended successfully to sequences in the form of Condi-
tional Random Fields (CRFs). The CRF framework builds the
discriminative maximum entropy model framework into a Markov
model for classifying labels for observed sequences of data. CRFs
have been successfully implemented as classifiers for tasks in part
of speech tagging [8], parsing [9] and other areas. In addition,
CRFs have been explored for building language models for ASR
[10] and for phone classification [11].

The framework of CRF models provides an intuitive method
for combining evidence from various sources within the data to de-
termine the content of the utterance. CRFs present an interesting
set of tools for analyzing spoken utterances, as they mirrors the fa-
miliar HMM models used in speech recognition while still provid-
ing a framework for discriminative evidence combination. In this
paper we look at a method of using Conditional Random Fields to
combine together phonetic attributes for phone recognition. In the
following section, we provide an overview of Conditional Random
Fields, including how their definition and training. Following this,
we discuss how CRFs can be used to combine together discrimina-
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phonetic features for recognition. Finally we give an overview
ur experimental setup and a discussion of our results.

2. Conditional Random Fields
e Conditional Random Fields are relatively new for ASR, we
n with a brief discussion of the model using notation and ter-
ology taken from [8] and [9]. A Conditional Random Field is
scriminative model that attempts to model the posterior prob-
ity of a label sequence given a set of data presented to it. It
constraint-based model, where different attributes of the data
g modeled are chosen to constrain the resulting probability of
various labels that the data segment can receive. We might,
example, wish to indicate that sometimes the phone /d/ can
ealized in a way where it loses its voicing, and might take on
erties normally associated with the phone /t/. A CRF model
e data allows us to look for these attributes in the data and
arn appropriate weights for how often /d/s might be realized
evoiced, and then apply this information when attempting to
rmine the proper label for that data segment.
A CRF defines a posterior probability P (y|x) of a label se-
ce y for a given input sequence x. For our purposes, the input
ence x corresponds to a series of frames of speech data, while

label sequence y is the phone label sequence assigned to the
t sequence. Each frame of x is assigned one label in y.
A CRF is described by a series of state feature functions
x, i) with corresponding weights λ and a series of transition

ure functions t(y, y′,x, i) with corresponding weights μ. Here
d y′ are labels, x is a sequence of observations, and i an index
ting to a position in the sequence x.
A state feature function is only non-zero if the label y matches
abel that the feature function is defined for at position i and the
rvation sequence x at position i shows evidence of a particular
bute that the feature function is defined for. For example, we
ht have a state feature function that is defined for the particular
ne /t/ indicating that the phone is not voiced. This state feature
tion for devoicing could be defined as follows:

(y,x, i) =

j
1, if yi = t and voiced(xi) = false
0, otherwise

This state feature function evaluates to a non-zero value only
n the input label matches the label associated with the function
his case /t/) and when input data sequence does not show evi-
e of voicing at position i. For illustration purposes, the output
is function is binary, but the definition of a CRF does not re-

e feature functions to be binary; the voicing observation above
d be replaced by a real-valued function. Most of the feature
nitions in the literature use binary feature functions, but in this
r we make use of real-valued feature functions.

September 17-21, Pittsburgh, Pennsylvania



Transition feature functions are defined in a similar manner,
but with a dependency on two labels (the previous label and the
current label) rather than just the current label. The transition fea-
ture function evaluates to a non-zero value only when the labels in
the sequence (yt and yt−1) match the labels defined for the tran-
sition function (y and y′ respectively) and some attribute in the
data exists. Other than the use of two successive labels instead of
a single label, transition feature functions are defined in the same
manner as state feature functions.

Given these feature functions, the form of the conditional
probability of a label sequence y over the observed sequence x
takes the form:

P (y|x) ∝ exp
X

i

(
X

j

λjsj(y,x, i) +
X

k

μktk(yi−1, yi,x, i))

(1)
Following [9], we make this notation more uniform by collaps-

ing the notation for state feature functions and transition feature
functions together into one notation style for all feature functions:

f(y,x, i) =

j
s(yi,x, i), if f is a state function

t(yi−1, yi,x, i), if f is a transition function

In addition, we merge the values of the associated μ and λ val-
ues together into a single weight vector λ. This allows the features
from the observed data sequence x and the label sequence y to be
represented as a feature vector defined as:

F(y,x) =
X

i

f(y,x, i) (2)

which allows us to re-write equation (1) as:

P (y|x) =
exp(λ · F(y,x))

Z(x)
(3)

where
Z(x) =

X
y

exp(λ · F(y,x)) (4)

Here the normalizing constant Z(x) is dependent on the sum
of all possible label combinations over the observed data sequence.
Note that this means that if we only want to find the best sequence
through the data and not the actual probability for a sequence, we
merely have to find the sequence y that maximizes λ · F(y,x).

arg max
y

P (y|x) = arg max
y

exp(λ · F(y,x)) (5)

As pointed out by [9], the feature vector F(y,x) decomposes
into a sum of terms for sequential labels, and the maximum value
can be found through the application of the Viterbi algorithm.

Conditional Random Fields are trained by maximizing the log-
likelihood of the the training set with respect to the model – the
best model for the training data comes from the model that gives
the highest likelihood for the training set. A great deal of inves-
tigation has gone into how conditional random field based mod-
els can be trained. In [12], various methods for computing these
weights were examined and gradient-based methods were found
to give good performance for maximizing the log-likelihood. We
follow this recommendation and use LBFGS to find the zeros of
the gradient.

Computing the gradient of the log-likelihood is not a trivial
task, as it requires the computation of the normalizing constant
Z(x) at every iteration. Fortunately, there is a variant of the
forward-backward algorithm that computes this efficiently (a dis-
cussion of this implementation can be found in [9]).
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3. CRFs and Discriminative ASR
ing speech recognition as an evidence combination task, we

see how the constraint-based conditional random field frame-
k might work in ASR. A discriminative classifier (such as an
ti-layer perceptron) provides evidence from the speech signal
particular attribute. At the highest level, this might just be an

cation that a particular phone has been uttered, while at lower
ls this may be an indication that a particular speech attribute
h as voicing, or place of articulation) exists in the frame. In the
framework, these bits of evidence from the speech signal are
weighed based on their relevance to the phone being hypoth-

ed, adding their positive or negative weights based on whether
are good evidence either for or against that phone. The most
able phone can then be selected.
We can see that the CRF framework plays a role comparable
at of an HMM – it provides a Markov framework via the tran-
n features for allowing hypotheses from previous timesteps to
ence the selection of the current label. In this manner, we
implement a discriminative framework for ASR using a CRF
lace of the traditional HMM. One possible advantage of this
ework is that it makes no assumptions about the interdepen-
e of the observed data. HMMs make an assumption that the
rved data is independent given the labels, while CRFs require
uch assumptions to be made.
For our initial exploration, we have chosen to extend prior
k on phonological feature detection (e.g. [13]) to build a model
combines together phonetic attributes defined by the Interna-
al Phonetic Association (IPA) phonetic chart and learned via a
ti-layer perceptron. Each phone was broken down into a de-
tion of its component phonetic attributes as given in Table 1.
goal for this experiment was to examine the effectiveness of
g a CRF model to perform the labeling of a sequence of phones
an observed speech signal based on extractions of these com-
phonetic attributes from the speech signal.

Table 1: Phonetic attributes extracted.

bute possible output values

RITY vowel, obstruent, sonorant, syllabic, silence
ICE voiced, unvoiced, n/a
NER fric., stop, closure, flap, nasal, approx., nasalflap, n/a
CE lab., dent., alveolar, pal., vel., glot., lat., rhotic, n/a

GHT high, mid, low, lowhigh, midhigh, n/a
NT front, back, central, backfront, n/a
ND round, nonround, roundnonround, nonroundround, n/a
SE tense, lax, n/a

Our work differs from the work in [11] on phone classification
o major ways: First, our system uses phonetic attributes as

t features, rather than the MFCCs. Second, our paper exam-
a system that performs a phone recognition task, rather than
one classification task, allowing for the possibility of deletion
insertion errors in the results.

4. Experimental Setup
these initial experiments we used the TIMIT acoustic phonetic
ch corpus [14] for all of our training and testing. To extract

netic features, we trained a set of neural networks using the
I QuickNet MLP neural network software [15]. These neural
orks were trained on individual phonetic attributes (Table 1)

ved from the phonetic transcriptions of TIMIT. Each phone in



the transcript was converted to its canonical attribute definition.
The MLP networks were trained to produce a posterior probability
over the values of each attribute class. 12th order PLP features,
plus delta coefficients, were used as input to these MLPs.

As a baseline for comparison purposes, we compared phone-
level accuracies of the system to the results given by a system built
using the Tandem model described in [1]: the output of the MLP
attribute detectors is used as input to a Gaussian-based HMM. For
these experiments, the Tandem system was built using HTK [16]
and trained on the a modified version of the outputs from our MLP
system described above. A phone bigram language model built
from the training set was used in the scoring of the results. As
described in [1] we used the linear output of the MLPs with a KL
transform applied to them to decorrelate the features, as this gave
the best results for the HMM system.1 We also show results of
HTK systems trained on MFCCs and directly on the derived PLP
features for comparison purposes. In addition, for all of the sys-
tems we used a reduced phoneme labeling for TIMIT of 39 pos-
sible outputs instead of the full 61 phone labels as described in
[17]. All HTK triphone results are for 4 gaussian mixtures, while
monophone results are for single gaussians.

To train our conditional random fields models, we used soft-
ware derived from the Java CRF package on Sourceforge [18].
This package (and the code that we derived from it) uses a quasi-
Newton LBFGS algorithm to perform the gradient minimization
used to train the maximum entropy models. The training process
as implemented was based on the work done in [9], using their ver-
sion of the forward-backward algorithm to compute the gradient of
the log-likelihood for minimization.

To build a CRF model with a structure that is comparable to
the Tandem system, state feature functions are defined as the out-
puts of the QuickNet MLPs and an associated label, with one fea-
ture function per label/net output combination. In other words, if
the outputs of the MLPs for a particular data segment xi are given
as the vector O, then the feature function sj(y,x, i) takes on the
value of the attribute in O associated with function fj when the
label y matches the label at time i that we are evaluating and the
value of 0 when the label y does not match this label. The model
additionally has a bias state feature for each possible label. De-
fined in this manner, feature functions are not restricted to the val-
ues of 0 or 1, but instead are continuous values bounded by 0 and 1.
In addition, unlike the HMM model, no decorrelation or lineariza-
tion is performed on the features given to the CRF – the posteriors
learned by the MLPs are fed directly into the CRF system.

Transition feature functions are implemented in a simple bi-
nary manner, with the transition function tj(y, y′,x, i) evaluating
to 1 if a transition occurs between the two labels y and y′ at the
time from i − 1 to i and evaluating to 0 if this transition does not
occur. In addition, tj evaluates to 0 when i is at time 0 (since no
previous transitions occurred into time zero). Unlike the state fea-
ture functions, this is a hard 0 or 1 decision - either a transition
occurs at this timeframe or it does not.

At testing time, we do not know whether a particular transition
has occurred or not at a given frame, so all possible transitions are
postulated (essentially giving every transition feature function a
value of 1 for a given transition label pair). State feature functions
use the values provided by the MLPs to determine their frame-level

1The Tandem system described in [1] uses phone posteriors, rather than
the posteriors for the phonetic attributes we use here. Internal experiments
within our group have shown comparable results for the Tandem system
trained on phonetic attribute posteriors to one trained on phone posteriors.
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lts. For decoding purposes, frame-level results are written to a
ce, where each possible phone value for a state is a node and
sum of the transition and state features are placed on the arcs
responding to the unnormalized log probabilities of the terms
quation (5). These lattices are then decoded using the AT&T
te State Toolkit [19] to give the best path.

5. Results & Discussion
e 2 shows the comparisons between the different models on

ne correctness and accuracy as given by HTK’s HResults pro-
. As we can see, the basic CRF model performs with better
racy than the Tandem monophone-only system, and its accu-
begins to approach that of the Tandem triphone model. It is

ortant to note, however, that the CRF was not trained on any-
g as complex as triphones – only on single phone labels. For

RF, the simple transition model implemented here acts much
a combination of the duration model in an HMM and a lan-
e model over the phones. The CRF effectively has a single-
duration model built into its training process (i.e. the weight
transition from a phone label to itself in the next frame), as
as a transition weight from every phone to every other pos-
phone. Also note that the Tandem and CRF models do not
a comparable number of parameters. The CRF model has

parameter for each state function and one parameter for each
sition function, with roughly 4500 parameters for this model.
omparison, the triphone Tandem model has over two million
meters while the monophone Tandem model has over 28,000.

Table 2: Phone accuracy comparisons.

Model Phone Accuracy Phone Correct

andem (monophone) 61.48% 63.50%
Tandem (triphone) 66.69% 72.52%
TK (triphone / PLPs) 60.08% 64.07%
K (triphone / MFCCs) 62.37% 70.82%
CRF (monophone) 65.23% 66.74%

Importantly, the model as described here implements only a
simplistic transition model – it does not make use of the ob-

ed data to decide directly if a transition has occurred or not.
ead, it makes use only of the overwhelming evidence that the

must have changed (because the state features point over-
lmingly to the conclusion that the current state cannot be the
e as the previous state). The CRF as implemented here has
y more deleted phones in its results than when compared to
er the monophone or the triphone Tandem models – indicat-
that the CRF system is undergenerating its results. This gives
ht to the idea that the system’s performance relative to the
em triphone system may be because of the simple transition
el used in implementation.
Besides the extra deletions, the CRF also showed fewer inser-
s and substitutions than the other models. We can analyze this
ct by looking at the precision of the models, using a form that
ed quite often in statistical natural language applications:

precision =
totalcorrect

correct + subs + inserts
(6)

The precision gives us a measurement of how often we are
t when we generate a phone hypothesis, rather than the per-
age correct measure which shows how many of our hypothe-

ere right overall. Precision results for the various models are



shown in Table 3. Here we can see that when the CRF hypothe-
sizes a phone, it is correct more often than any of the other models.
This lends more evidence to the idea that the undergeneration that
the CRF is performing is hurting its final result.

Table 3: Phone Precision.

Model Precision

Tandem (monophone) 73.66%
Tandem (triphone) 73.44%

HTK (triphone / PLPs) 69.97%
HTK (triphone / MFCCs) 68.89%

CRF 77.66%

6. Conclusions and Future Work
These results show some promise for the idea of using Conditional
Random Field models for ASR with discriminatively trained at-
tributes. With a simple model, we achieve results that are com-
parable to similar HMMs. Even though the system was unable to
achieve the results of a triphone-trained HMM system, we were
able to achieve results that were superior to an HMM system that
was trained on monophone labels which is the type of system that
is most similar to the CRF system we built. Also, there has been
not attempt to impose extra parameters that the HMM makes use
of onto the CRF model like word transition penalties or a language
model scaling factor. While parameters like these could be im-
posed on the model, we feel that adding more information to the
learning process itself may be a better way of tuning this model.
This is something we would like to explore further.

In addition, the real power of the CRF model comes from the
ability to add features to the transition features – an aspect that
we are currently not exploiting. Preliminary experiments expand-
ing this model to include seemingly redundant features such as
phone posteriors have shown some improved performance for the
model. In the future, we also want to add more features to the
state transitions to see if this improves performance. One idea is
to add a boundary detector [20] that includes information about
whether a boundary has been observed or not, which may help
with the undergeneration problem observed above. We would also
like to try adding more context-dependencies to the transitions – in
other work involving CRFs adding transition features derived from
attributes of the surrounding observed nodes has improved perfor-
mance, and our preliminary experiments in this direction show im-
provements for this model as well.
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