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Abstract
In this paper, we describe a discriminative technique to determine
an optimal HMM topology for the each of the models in a con-
tinuous speech recognition system such that the word error rate
(WER) is minimized. In conventional model selection techniques
such as Bayesian information criterion (BIC), the model complex-
ity is determined without considering the other classes in a system.
In our work, an optimal model topology is selected by consider-
ing how well a given model can discriminate examples of other
classes from its own. By doing so, the estimated model parame-
ters indirectly make sure that class separability is increased. In an
earlier work [1], we have proposed this technique and experiments
were carried out on an E-set. Presently, we extend it for building a
syllable-based continuous speech recognition system. Preliminary
experiments carried out on the TIMIT corpus show that a con-
siderable reduction in WER can be achieved using the proposed
technique over the BIC-based technique for model selection.

Index Terms: speech recognition, discriminative training, product
of Gaussian.

1. Introduction
The most popular training method for a hidden Markov model
(HMM) is maximum likelihood estimation (MLE). In MLE, with
a pre-defined structure of a model and available training data, pa-
rameters of a HMM can be efficiently estimated [2] by maximiz-
ing the likelihoods of the training data. It is widely used because
of the simplicity of its implementation using the Baum-Welch re-
estimation algorithm and its minimum variance property. How-
ever, the weakness of the MLE algorithm lies in the fact that the
model parameters are estimated in isolation, in the sense that infor-
mation about other classes in a given task is not considered. Apart
from this, defining a structure of a HMM (especially, the number
of states and mixtures) is one of the major issues in acoustic mod-
eling.

In a speech context, the number of states is usually chosen
based on either the number of acoustic variations that one may ex-
pect across the utterance or the length of the utterance, and the
number of mixtures per state can be chosen based on the amount
of training data available. A better alternative technique to choose
the number of components of a model (number of states and mix-
tures) is the Bayesian information criterion (BIC). Recently, the
BIC has been successfully used as a model selection technique in
various classification tasks. In a speaker indexing task, the BIC has
been used to switch between Vector Quantization (VQ) and Gaus-
sian mixture model (GMM) based speaker models, and to choose
the number of mixtures in a GMM [3]. In speech recognition, the
BIC has been used to choose the number of mixture components,
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variance model [4], and the number of HMM states ([4], [5]).
andwriting recognition [6], the BIC is followed to choose the
ber of states of a HMM for different characters to be recog-
d. Even though the BIC is an efficient technique for control-
the complexity of a system, it does not consider information
t other classes. This may lead to an increased error rate espe-
y when dealing with most competitive and closely resembling
r classes.

A discriminant measure-based technique was proposed in [7]
odel complexity adaptation. In [7], for each class, a discrim-

t measure is computed by considering the corresponding class
el and a fixed number of confusable models in a system. Based
his measure a decision is made either to increase or decrease
number of components of a model. Discriminative training
niques, such as Maximum mutual information (MMI) or Min-
m classification error (MCE) based techniques, also consider
other models in a system to increase the likelihood of a given
el. In MMI- or MCE-based techniques, the model parame-
are updated directly instead of modifying the complexity of a
el. In these discriminative techniques, either the parameters
e complexities of the models are optimized by considering

rest of the models or at least a subset of the most confusable
els in the system.

In this paper, we propose a technique for complexity adap-
n, which is similar to the technique presented in [7]. How-
, the major difference lies in the fact that the complexity of
odel is adjusted by considering only the training examples of
r classes and not their corresponding models. Hence, the en-
training process is independent of the other models considered
system. In this technique, the focus is given to how well a

n model can discriminate training data of different classes, in-
d of considering how well training data is fitted with a correct
el when compared to the other models in the system. If each
e models in a system can discriminate its own training ex-

les from the others, it will indirectly make sure that the class
rability will be increased. Even though it does not guarantee
the different classes will be well separated in a classification
ain, it at least ensures that the resultant models are better than
IC-based models.

In an earlier work [1], we have proposed this technique and
riments were carried out on an E-set. In the present work,
ame technique is used to develop a syllable-based continuous
ch recognition system. Here the discriminative optimization
nique is applied for selecting a proper topology for each of the
ble models. The interest is shown only for reducing the word

r rate and not for reducing the complexity of a model.

The rest of the paper is organized as follows. We first describe
odel selection techniques used for analysis, namely, the BIC-
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based technique and the proposed technique in Section 2. Under
the proposed technique, we detail the importance of separating two
classes in the likelihood space of a given model, and define an ob-
jective function to be minimized. In Section 3, the experimental
set up used for the present study is described briefly, followed by
a description on PoG-based model selection algorithm in Section
4. The performance of a syllable-based continuous speech recog-
nition system trained using the proposed method is compared with
a system trained using BIC and analyzed in Section 5.

2. Model selection Methods
As mentioned earlier, with a pre-defined structure of a model and
the available training data, the parameters of a HMM can be effi-
ciently estimated using the MLE algorithm. For our work, acoustic
modeling is carried out using the MLE algorithm only. The focus
is given to choosing a proper topology for the models to be gen-
erated, especially the number of mixtures per state. We compare
the performance of the proposed technique with that of the con-
ventional BIC-based technique. These systems are implemented
using the Hidden Markov Model Toolkit (HTK). The details of the
techniques used in the previous work [1] are discussed again for
clarity purposes.

Let us consider the utterances of a class Ci as si
k, k =

1, 2, ..., Ki, where Ki is the number of training examples avail-
able for the class Ci. Let λm

i be the acoustic models of the class
Ci, where m is the number of mixtures per state, which varies
from 1, 2, ..., M . Let the acoustic-likelihoods of the utterances of
the class Ci for the given model λm

i be p(si
k|λ

m
i ).

2.1. Bayesian information criterion

In BIC-based complexity adaptation methods, the number of com-
ponents of a model is chosen by maximizing an objective func-
tion that is essentially the likelihood of the training examples of a
model penalized by the number of components in that model and
the number of training examples. For the class Ci, let us assume
that M models are pre-generated, each with a different number of
mixtures per state. According to the BIC, the optimal model (λ∗

i )
is the one which maximizes an objective function, as given below.

λ
∗
i = arg max

m=1,2,...,M
log p(si

k|λ
m
i )−α

1

2
(m Si d) log(Ki) (1)

In Equation (1), Si is the number of states in the model λm
i , d is

the dimension of the feature vector, and α is an additional penalty
factor used to control the complexities of the resultant models. In
our experiments, we have varied the value of α and the results are
reported for different amounts of complexities.

2.2. Product of Gaussian likelihoods (PoG)

Let us consider the utterances of two different classes (Ci and Cj )
as si

k and s
j

k. Let λi and λj be the models of the classes, Ci

and Cj , respectively. Let the likelihoods of the utterances of the
class Ci for the given model λi be p(si

k|λi). We can assume that
these likelihoods are distributed normally in likelihood space with
parameters μii and σ2

ii. Let this Gaussian be Nii(μii, σ
2

ii). The
likelihoods of the utterances of the class Cj for the acoustic model
of Ci are p(sj

k|λi) and are distributed with parameters μij and
σ2

ij . Let this Gaussian be Nij(μij , σ
2

ij). If these two Gaussians
overlap in likelihood space as shown in Figure 1(a), then to avoid
errors during classification, the Gaussian likelihoods for the other
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re 1: Necessity to separate the Gaussian likelihoods. (a) The
ihood distributions of the utterances of the classes Ci and Cj

he given model λi. (b) The likelihood distributions of the ut-
nces of the classes Ci and Cj for the given model λj .

el (say Nji and Njj ) should be well separated as in Figure
. However separating Nji and Njj as in Figure 1(b) is possi-
nly when the model λj is well trained. In other words, during
ing of the model λj , the acoustic likelihoods of all the utter-
s of the Cj should be maximized to a greater extent. To max-
e the likelihood on the training data, the estimation procedure
n tries to make the variances of all the mixture components
small. Although this leads to good training likelihood scores,

ten provides poor matches to independent test data. This is
cially true with the models of acoustically similar classes. To
d this, it is always better to reduce the overlap between the
ihood Gaussians (say, Nii and Nij ) of utterances of different
ses (say, Ci and Cj) for a given model (say, λi).
In our case, we assume that two Gaussians overlap with each
r considerably if either of the following conditions is met:

• If μii ≈ μij , irrespective of their corresponding variances.

• If σii or σij is wide enough so that both the Gaussians over-
lap considerably.

In order to quantify the amount of overlap between two Gaus-
s, we can use error bounds, like the Chernoff or Bhattacharyya
ds. However, these error bounds are sensitive to the variances
e Gaussians. For example, if we consider the Bhattacharyya
d for error probability, even if μii = μij and σii �= σij , the

r will not be equal to 1 (if prior probabilities are ignored). For
analysis, this may not be a suitable measure, at least when the
ances of these two distributions are quite different. In [8], mul-
probabilistic models of the same data are combined by multi-

ng the probabilities together. A similar logic is used here, but
stimating the amount of overlap between two Gaussians as de-
ed below. Let the product of Nii(μii, σ

2

ii) and Nij(μij , σ
2

ij)

k(μk, σ2

k).1 This can be written as

μk, σ
2

k) = Nii(μii, σ
2

ii) . Nij(μij , σ
2

ij) (2)

= K e

−

»
(p(si

k|λi) − μii)
2

2σ2

ii

+
(p(sj

k|λi) − μij)
2

2σ2

ij

–

In the present study, Nk is not normalized, as this will not affect its
n Equation (10).



where

K =
1

2πσiiσij

. (3)

For the product of the Gaussians, the mean (μk) can be given as

μk =
σ2

ijμii + σ2

iiμij

σ2

ii + σ2

ij

. (4)

In order to quantify the amount of overlap between two different
Gaussians, we define the following ratio (O).

O =
max[Nii(μii, σ

2

ii) . Nij(μij , σ
2

ij)]

max[Nii(μii, σ2

ii) . Nii(μii, σ2

ii)]

=
Nr

Dr
. (5)

In Equation (5),

Nr =
1

2πσiiσij

e

−

»
(μk − μii)

2

2σ2

ii

+
(μk − μij)

2

2σ2

ij

–
(6)

and Dr =
1

2πσ2

ii

. (7)

From Equations (6) and (7), Equation (5) can be written as

O =
σii

σij

e

−

»
(μk − μii)

2

2σ2

ii

+
(μk − μij)

2

2σ2

ij

–
. (8)

If μii = μij , then Equation (8) reduces to

O =
σii

σij

. (9)

However, for this case we expect the overlap O to be equal to 1.
To achieve this, Equation (8) is further normalized as given below.

ON = O
σij

σii

= e

−

»
(μk − μii)

2

2σ2

ii

+
(μk − μij)

2

2σ2

ij

–
. (10)

The resultant ON is used as a measure to estimate the amount of
overlap between two Gaussians. The steps followed during train-
ing are given below.

3. Experimental setup
For the present work, the TIMIT corpus is considered for both
training and testing. The word-lexicon is created only with the test
words. For the words that are in common in train and test data,
pronunciation variations are taken from the transcriptions provided
with the corpus and for the rest of the test words only one transcrip-
tion is considered.

Syllabification software [9] available from NIST was used to
extract the syllables from the phonetic segmentation boundaries
given in the TIMIT corpus. For all the phonetic transcriptions
available with the TIMIT corpus, the first-best results given by the
syllabification algorithm are considered. Even though the num-
ber of unique syllables in the training corpus is ≈ 5000, most
of the syllables have very few examples. In our work, we have
considered 200 syllables that have more than 50 examples. The
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of the syllables are replaced by their corresponding phonemes
e transcriptions as described in [10]. 200 syllable and 46
ophone models are initialized using hand-labeled data avail-
with the corpus. For initialized models, the number of states

xed based on the number of phonemes for a given sub-word
and the number of mixtures per state is considered as one.
, the monophone models are generated in the context of sylla-

. For the re-estimation of model parameters, a standard Viterbi
ment procedure is used. The number of mixtures per state for
model is then increased to 30, in steps of 1, by a conventional

ture splitting procedure. Each time, the model parameters are
stimated twice.
For the experiments, no optimization is carried out other than
rd-insertion penalty optimization. Further, in order to clearly

the effect of syllabic units in combination with phone-sized
s during Viterbi-alignment, no word level n-gram statistics are
. Testing is carried out on the whole test corpus of TIMIT.

4. PoG-based model selection
steps followed for selection of a proper model using the infor-
on derived from the PoG are given below.

. For the class Ci, extract all the corresponding models from
the previously trained sets (refer section 3). Let these mod-
els be λm

i , where m = 1, 2, ..., M . As a first step, for the
class Ci, a single mixture model (λ1

i ) is considered.

. For the given model λm
i , compute the acoustic-likelihoods

of the utterances of all the classes separately. Here, we
assume that the likelihoods are distributed normally in the
likelihood space. Let the distributions and their correspond-
ing means and variances be Nij , μij , and σij respectively,
where j = 1, 2, ..., N .

. Compute the ON for each pair ‘Nii, Nij ’, where j =
1, 2, ..., N and j �=i.2

. For any of the pairs, if ON is greater than ε, increase the
number of mixtures per state by 1 (m = m + 1) and repeat
the steps 2 to 4.

. Otherwise, the corresponding model λm
i is considered as

the optimal model.

e above training process, if the value of ε is reduced, we can
ct a better performance. However, below some value for ε

models may become over-trained. For performance analysis
he proposed technique for different amounts of overlap, the
e training process is carried out for different values of ε and
esults are reported in the next section. In this work, the model

mization technique is applied only to the syllable models. For
he phoneme models, the number of mixtures is fixed as 16 per
.

5. Performance analysis
BIC and the PoG-based models for all the syllables are gen-
d as explained in the previous section and used for testing the

ormance of the recognizer. In some cases, since the model size

Here, N can be the same as the number of syllable models available
e system. However, to reduce the computation time, in this work,
a restricted (N = 10) number of syllables is considered. For each of
yllables, the N neighbours (closely located syllables in the acoustic
e) are derived with the initialized model and the same N neighbours
sed for the rest of the optimization procedure.



seems to grow uncontrollably, we fixed the maximum number of
mixtures per state at 30. The performances of these two types of
systems are given in Table 1 for comparison. For complexity anal-
ysis, the WER of these two systems with respect to the complexity
is shown in Figure 2.

Table 1: Word error rate (in %) as a function of α in the BIC-based
system and ε in the PoG-based system

BIC-based system PoG-based system
α # Gaussians WER ε # Gaussians WER

(X 103) (X 103)

2.00 452 48.5 .98 490 48.9
1.30 505 45.8 .90 807 45.0
1.00 564 44.3 .80 940 43.9
0.80 638 43.9 .70 1049 43.6
0.60 769 43.6 .60 1135 42.8
0.40 1081 44.4 .50 1219 42.9
0.20 1517 47.7 .40 1292 43.4

.30 1364 45.8
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Figure 2: WER curves of the BIC (as a function of α) and the PoG
(as a function of ε) based systems

From a comparative analysis, the following observations may
be made.

• For lower complexities, the error rates of the BIC-based
system are found to be lower when compared to that of the
PoG-based system.

• For higher complexities, the PoG-based system clearly
dominates and the minimum error rate is achieved by the
PoG-based system.

• In the case of the PoG-based system, one can observe that,
as the overlap reduces, the error rate also reduces and for
extreme cases, since the models are over-trained, the error
rate again increases. This analysis shows that one can fix
the value for ε as 0.4 to 0.8 for better performance.

From these observations, we may conclude that if the WER is of
primary importance then the PoG-based system can be preferred.
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6. Conclusions
onventional techniques for model optimization, the topology
model is optimized either without considering other classes

in BIC), or considering a subset of competing models (as in
riminative techniques). In our work, we have made an attempt
ptimize the topology of the models by considering whether a
n model can discriminate training utterances of other classes

its own. The major advantage in our technique is that the op-
zation is carried out discriminatively and at the same time, in-
ndent of the other models available in a system. Even though
omplexity of the system seems to grow as the amount of over-
etween different classes in the likelihood-space is reduced, it
res a lower WER. In the present study, we concentrated only
odifying the number of mixtures of a model. This can be

nded to optimally decide the number of states also. Further,
ad of a uniform number of mixtures for all the states, varying
bers of mixtures can be tried, which may reduce the complex-
f the system.
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