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Abstract

In this paper, we describe a set of experiments that examine
the correlation between energy and pitch accent. We tested the
discriminative power of the energy component of frequency sub-
bands with a variety of frequencies and bandwidths on read speech
spoken by four native speakers of Standard American English, us-
ing an analysis by classification approach. We found that the fre-
quency region most robust to speaker differences is between 2 and
20 bark. Across all speakers, using only energy features we were
able to predict pitch accent in read speech with accuracy of 81.9%.

Index Terms: prosodic analysis, spectral emphasis

1. Introduction
In English speech, accenting particular words within an utterance
serves a number of purposes. Accenting or deaccenting a word
can provide information concerning its discourse status [12] and
discourse structure [16]. An accented word’s “importance” in a
discourse may indeed be related to the type of accent with which
it is produced or the peak height or amplitude of the accent. Pitch
accent may also be employed by listeners to perform syntactic and
semantic disambiguation [22, 5]. Automatic detection of pitch
accent is therefore critically important to many natural language
understanding tasks. Of particular interest to builders of text-to-
speech systems is the possibility of automatically annotating large
unit-selection corpora for prosodic information, so that prosody
can be included in the unit search process to produce more natu-
ral synthetic speech and to permit users to specify prosodic vari-
ation. Currently such corpora must be manually labeled, a very
time-consuming process.

Considerable attention has been given to the automatic identi-
fication of pitch accents within an utterance. It has been shown in
a number of studies that features based on the pitch (f0), intensity,
and duration of a word or its component syllables can be used in
concert to achieve accent prediction accuracy between 80% and
85%. While this automatic prediction task has been studied exten-
sively, there is no consensus concerning the best way to leverage
highly predictive features from the three information streams.

In this paper, we examine the role of energy in the speech sig-
nal as an indicator of pitch accent in Standard American English
(SAE). It has long been believed [4] that amplitude is a signifi-
cant indicator of prosody in general and pitch accent in particu-
lar for accent in SAE [2]. Additionally, Sluijter and van Heuven
[26] showed that the energy component of a high frequency sub-
band – greater than 500Hz – highly correlates with stress in Dutch
speech. To further investigate this correlation for SAE, we con-
struct simple (binary) decision-tree pitch accent classifiers using
only energy features to identify those energy features that corre-
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most strongly with pitch accent. The experiments presented in
paper elaborate upon [26]’s findings by closely examining the
elation between pitch accent and the energy components of a
e number of frequency subbands.

In Section 2, we present previous research on the automatic
ction of prosodic events, focusing on studies examining the
elation between energy and pitch accent. We describe the data
in our experiments in Section 3. Our experimental method
esented in Section 4. In Section 5, we report on our results.
lly, in Section 6, we conclude and describe some future direc-
s of this research.

2. Previous Work
h research attention has been paid to the task of identifying
nationally prominent or accented words within an utterance
. [1, 6, 7, 8, 9, 17, 23, 25, 29, 30, 32, 33]). While there is
ensus that the energy of a word or syllable correlates with
accent, how to use the energy information in the speech sig-
o predict accent has not yet been determined. Sluijter and van
ven [26] have shown that accent strongly correlates with the
gy within a particular frequency subband, namely, that greater
500Hz in Dutch, using both production [26] and perception
experiments. Heldner [13, 14] and Fant [11] examined the
of this “spectral emphasis” in read Swedish speech, finding
the relationship between the energy in a particular spectral
on and the overall energy of the signal was an excellent pre-
r of pitch accent. For SAE, Tamburini [28, 29], reported that
nergy components of the 500Hz to 2kHz frequency band were
e predictive of prominence than those from either 0 to 500Hz
bove 2kHz. Also, Tepperman [30] used the RMS energy ex-
ed from between 60 and 400Hz as a feature in his syllabic
s detection system on non-native British English speech. This
arch suggests that energy extracted from specific frequency re-
s rather than the entire spectrum is helpful in the automatic
iction of pitch accent in English. The work presented in this
r examines the energy component of a large set of frequency
s to determine which are most predictive of pitch accent in
SAE.

3. The Corpus
this work we used data from the Boston Directions Corpus
C), collected by Nakatani, Grosz, and Hirschberg for a study
e relationship between intonation and discourse structure [15].
corpus consists of spontaneous and read speech from four na-
speakers of Standard American English, three males and one
ale, all students at Harvard University. Each speaker was given
ten instructions and asked to perform a series of nine increas-
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ingly complicated direction-giving tasks. Their audience was a
confederate, who was to trace the routes given on a map, as the
directions were given. This elicited spontaneous speech was sub-
sequently transcribed, and speech errors removed. At least two
weeks later, the speakers returned to the lab and read the tran-
scripts. The corpus was then ToBI [24] labeled and also labeled
for discourse structure.

The material used for our current study consists only of the
read speech from this corpus. This subcorpus contains 50 minutes
of speech and 10825 words. We employ the hand-segmented word
boundaries from the ToBI orthographic tier during the extraction of
energy features, and we assume that word boundaries are available
in both training and test sets. We use the ToBI tonal tier to provide
ground truth pitch accent labels for the training and testing of our
classifiers. However, we make only a binary distinction between
accented and non-accented words; we do not attempt to classify
pitch accent type.

4. Method
To examine the correlation between energy and pitch accent, we
have taken an analysis by classification approach. We constructed
a feature vector for each manually-segmented word whose el-
ements contained only features derived from the energy of the
speech signal. Using the pitch accent annotation from the manual
ToBI labeling, we assigned a binary class to each feature vector
indicating whether the word is uttered with a pitch accent or not.
Using this labeled data and ten-fold cross validation, we ran clas-
sification experiments to determine how predictive of pitch accent
the energy components of various frequency subbands are. We
used the weka machine learning environment’s [34] C4.5 imple-
mentation, J48, a decision-tree algorithm, for classification.

The features we examined were computed from the energy
component of a variety of frequency subbands. These subbands
were derived from the Bark scale, using a Bark-to-Hertz transfor-
mation function of hertz = 600 ∗ sinh(bark/6) [10]. We varied
the lowest frequency of the subbands from the bark edges 0 to
19 and varied the bandwidth from 1 to 20 bark. The maximum
frequency of any subband was 20 bark due to the 8kHz Nyquist
rate of the BDC speech material. These combinations yielded 210
frequency subbands from which we extracted energy features for
analysis by classification. We performed the filtering and energy
extraction using the Praat speech analysis tools [3].

Our energy features included the minimum, maximum, mean,
standard deviation, and root mean squared (RMS) of the energy,
as well as features designed to capture the dynamics of the energy
within the word. These features included the z-score of the max-
imum energy in the context of the current word, the mean slope,
and a four-way classification describing the shape of the energy
contour over the word (rising, falling, peak or valley).

Whether a word is perceived as accented or not is determined
by its acoustic properties relative to its surrounding intonational
context [18]. Therefore we included in the feature vector five nor-
malized energy features based on the surrounding region. We var-
ied the size of this contextual window in six different ways: 1) two
previous and two following words, 2) one previous and one fol-
lowing word, 3) one previous word, 4) two previous words, 5) one
following word, 6) two previous words and one following word.
The energy features calculated over these regions included:

• The difference between maximum energy in the current
word and the mean energy in the region, normalized by the
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standard deviation of the energy in the contextual window.

• The difference between mean energy in the current word
and the mean energy in the region, normalized by the stan-
dard deviation of the energy in the contextual window.

• The difference between maximum energy in the current
word and the maximum energy in the region, normalized
by the standard deviation of the energy in the contextual
window.

• The maximum energy in the current word normalized by
the energy range realized in the contextual window.

• The mean energy in the current word normalized by the
energy range realized in the contextual window.

We follow the American School of intonational description for
(e.g. [21]) in assuming that pitch accents, while interpreted
property of the word, are aligned with the lexically stressed
ble of that word. Therefore, the detection of pitch accents in
may profit from information found at the syllable or syllable
eus level. To that end, we automatically determined syllable
daries, as well as start and end times of syllable nuclei us-
algorithms based on [19] and [20], respectively. In order to
tify the most predictive region of analysis within a word we
the classification experiments under four different configura-
s: using energy information extracted from 1) the entire word,
nly the component syllable nuclei, 3) the longest syllable in the
d and 4) the longest syllable nucleus in the word. We chose
clude the longest syllable and syllable nucleus with the two
er regions due to earlier experimental results that indicate that
accent correlates with a lengthening of the accented vowel
. [33]) and that the canonically stressed syllable of a polysyl-
word tends to be the longest (e. g. [31]).
The BDC has not been annotated for syllable or phone iden-
s and boundaries. We therefore cannot provide precise error
for these automatic segmentation approaches. However, we
able to compare the automatically derived syllable counts to
canonical pronunciation forms of the ToBI orthographic tier.
syllable boundary detector had an insertion rate of 20% and a
tion rate of 36%. The nuclei detector had an insertion rate of
and a deletion rate of 39%. As the actual pronunciations may
r significantly from the canonical forms, and pairs of dele-
/insertion errors may be attributable to alignment problems, we
e no claims as to the veracity of these error rates; they should
ken merely as estimates of the true accuracy of the automatic
ble segmentation systems.
It has been proposed that the extraction of energy from fre-
cy subbands is helpful because it isolates the formants of the
l portion of the speech signal from the fundamental frequency
13]. In order to evaluate this claim on our data, we used Praat’s
matic formant tracking algorithm to extract the frequency and
width of the first and second formants of the vocal portions of
peech signal. We chose to examine only the first two formants
use performance of the formant tracker degraded significantly
reater numbers. We then extracted energy components of the
ants for each frame of the speech. We constructed the feature
or described above based on the energy extracted from the au-
atically determined formant bandwidths as opposed to a static
uency range.
In total, we explored eight experimental configurations: We
tructed 210 classifiers, one for each frequency subband, ex-
ing energy features from either 1) the whole word, 2) only
ble nuclei, 3) only the longest syllable, and 4) only the longest



syllable nucleus. For each of these 4 configurations we constructed
speaker-dependent classifiers (one for each speaker) and a speaker-
independent classifier (using data from all 4 speakers).

5. Results and Discussion
The classification accuracy produced by our machine learning ex-
periments indicates significant differences in the discriminative
power of energy information extracted from distinct frequency
subbands.1 Across all experimental scenarios – extracting energy
from four different regions within a word, and looking at speak-
ers individually or all together – the mean relative improvement of
the most predictive subband over the least predictive was 14.8%.
As an example, Figure 1 shows the classification accuracies on all
speaker data using energy information extracted from the whole
word with a frequency bandwidth of 1 bark.
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Figure 1: Pitch accent prediction accuracies with bandwidth of 1
bark

While our experiments confirm the claim that accent is real-
ized through increased energy in a particular frequency subband,
the classification results do not support previous findings as to the
regions in which such useful information is to be found. Neither
in speaker-independent nor in speaker-dependent experiments, did
we find the most predictive band to be 500-2000Hz, as found in
[28, 29], or>500Hz as suggested by Sluijter and van Heuven [26]
or 60-400Hz as used in [30]. However, there are experimental
configurations in which the classifications based on energy con-
tributions from these regions are not significantly worse than the
most predictive band. For our data, the frequency range that yields
the most predictive features is between 3 and 18 bark (312Hz to
6000Hz) with energy information drawn from the entire word.
This band correctly classifies 76% of all words on average, over
10-fold cross-validation, compared to a majority class baseline of
42.4%. The precision and recall for detecting accented words is
71.6% and 73.4%, respectively. The most predictive features used
in this classification were the normalized maximum energy of the
word relative to the maximum and mean energy in three contex-
tual windows: 1) 1 previous and 1 following word, 2) 2 previous
and 1 following word, and 3) 2 previous and 2 following words.
However, this subband generates results significantly worse than
the best performing subband for one of the four speakers – re-

1Statistical significance was determined by χ2 with p ≤ 0.001.
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less of the region of analysis within each word. Interestingly
gh this speaker is one of the three male speakers, not the fe-
speaker. The band from 2 to 20 bark (203Hz to 8kHz)2, while
being the most predictive region in any experimental configu-
n, is only significantly worse than the best performing band
ne34. With energy drawn from the entire word, the subband
een 2 and 20 bark correctly classifies 75.5% of all words.
precision and recall for detecting accented words is 70.5%
72.5%. The most predictive features in this classification are
tical to those used for the 3 to 18 bark band. Due to both the
ictive power of this energy component within this frequency
and and its robustness to a variety of speakers and types of
ysis, we believe this to be the best region from which to ex-
energy information for the prediction of pitch accent, based
ur data. The Nyquist rate of our corpus is between 19 and 20
, so it is impossible to tell whether the band is more accurately
ribed as “all frequencies above 2 bark” or strictly between 2
20 bark. Classifiers trained on the first and second formant
rmation, analyzed together or separately, perform significantly
se than those based on the energy component of the subband
een 2 and 20 bark; on average they yield 6.4% relative ac-
cy reduction. It is possible that formants higher than the sec-
contain discriminative energy information as well. Addition-
since the formant tracking algorithm is errorful particularly
owels in which the first and second formants tend to overlap,
possible that these errors limit the usefulness of these features
ur study.

After observing that distinct subbands predicted pitch accent
varying accuracies, we analyzed the classification results to
rmine the degree to which the correct classifications over-
ed. We would expect a high degree of overlap if our data are
that there are distinct sets of words that are harder or eas-
o classify using energy features. We found however there is a
ively small intersection of correct predictions, even between
lapping or adjacent subbands. Moreover, 10823 out of 10825
points were correctly classified by at least one of the 210 clas-
rs. To exploit the predictive power of the individual classifiers,
et up a voting scheme, where each classifier classified a given
point and the majority classification was used as the final hy-
esis. Using this voting classifier, the accuracy improves to
% with precision of 76.7% and recall of 82.5%. This is a
high accuracy, given that we are ignoring f0 and duration in-
ation in these experiments and relying entirely upon energy
res.

The results described above are based on energy features of the
le word. Experiments using energy features extracted from
ions of the word (only the longest syllable, only the longest
ble nucleus, all syllable nuclei) each produced significantly
er classification accuracy. However, the energy features de-
d from all of the syllable nuclei in the word predicted pitch ac-
significantly better than those extracted from only the longest
ble nucleus. These findings indicate that there is, in fact, en-
information both in relatively short syllable nuclei and outside
yllable nuclei entirely which is useful for predicting pitch ac-
. Additionally, we found that the classification accuracies ob-
d by using the longest syllable in the word and the longest
ble nucleus in the word as the region of analysis did not sig-

NB:8kHz was the Nyquist rate of the corpus.
Classification of speaker h1, a male, with features extracted from the
est nuclei of the word.
Statistical significance determined by χ2 indicating p <= 0.05



nificantly differ. In the context of detecting whether an individual
syllable is accented or not, this is an interesting result; there is a
clear parallel between this and the observation that the duration of
a syllable is equivalently predictive of syllabic prominence as the
duration of a syllable nucleus [28].

6. Conclusions and Future Work
In this paper, we have described an analysis by classification ap-
proach to determining how the energy contributions from different
frequency bands correlate with pitch accent in read SAE. Our ex-
periments confirm that the energy component from different fre-
quency subbands predict pitch accent with differing degrees of
success. Specifically, we have found that the band between 3 and
18 bark to be the most predictive on our whole dataset, with data
taken from all four speakers. However, the band between 2 and 20
bark predicts pitch accent significantly better than the band from
3 to 18 for one speaker, while not predicting significantly worse
for the other three. As the Nyquist rate of our corpus is between
19 and 20 bark, it is moot whether this band is more accurately re-
ported as “all frequencies above 2 bark” or strictly between 2 and
20 bark.

We have found that the differences in predictive power be-
tween frequency subbands is not merely one of varied accuracy,
but, rather, that different subbands can accurately detect pitch ac-
cents on different sets of words. Using a voting scheme, we were
able to construct a classifier based on every subband we examined
– base frequency from 0 to 19 bark, bandwidth from 1 to 20 bark.
This voting scheme predicts pitch accent with 81.9% accuracy. Ex-
tending this approach, we will investigate an automatic method to
determine which frequency regions contain the most predictive en-
ergy information for pitch accent detection based on other features
of a given word.

As our results are dependent on manual transcription, our
method currently can only be applied to the task of annotating tran-
scribed corpora – TTS inventories, for example – for pitch accent.
Future experiments using automatic word segmentation will deter-
mine how robust the results are to segmentation error. In our future
work, we will also repeat our experiments on spontaneous speech
to determine how similarly pitch accent is realized in the two gen-
res with respect to energy. Additionally, we will incorporate our
parallel research into the usefulness of additional features based
on f0 and duration into a more general pitch accent classifier.
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