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Abstract
Information on the glottal waveform is an important part of many
speech applications. However, glottal waveform estimation re-
mains one of the more inexact sciences of speech processing. The
work presented here describes an enhancement to a recently pre-
sented algorithm by a new technique involving Rank-Based Glottal
Quality Assessment (RB-GQA). The basic premise is to investi-
gate potential measures of glottal quality and use these measures
to mark the general trends for determining which glottal waveform
estimations are better than others. The work presented here is the
beginning of a new research initiative to identify robust methods
of glottal waveform estimation across genders for use in speaker
analysis applications of normal voices (i.e., no voice pathology).
Index Terms: glottal quality, voice source, glottal waveform

1. Introduction
Glottal waveform estimation remains one of the more inexact sci-
ences of speech processing. Traditional theory has relied on the
modelling of speech as a cascade of linearly separable filters which
allow the glottal shaping filter to be estimated via inverse filtering.
Although speech production is not truly a linear process [1], this
model has served well for many applications and will be assumed
for this work. The primary problem in estimating the glottal wave-
form via inverse filtering is finding an estimate of the vocal tract
that is minimally affected by interaction with the glottal source.
Closed-phase analysis attempts to take advantage of glottal wave-
form mechanics to create better vocal tract estimates. The glottal
cycle generally consists of three phases: an opening phase (abduc-
tion of the vocal folds), a closing phase (adduction of the vocal
folds) and a closed-phase. During the closed-phase, it is assumed
that the acoustic speech waveform is independent of glottal reso-
nances and can be modelled as a sum of decaying sinusoids (e.g.,
linear prediction analysis (LPA)). However, the automatic identi-
fication of glottal closure instants (GCI’s) is a challenging issue.
Various studies have studied identifying GCI’s [2], [3], [4], [5].
However, the additional problem of identifying GCI’s is that in
many cases (e.g., females, emotional stress, etc.) they may not ex-
ist. External sensors, such as Electroglottographs (EGG) tend to
provide insight into the mechanics of glottal motion during speech
production and therefore yield fairly accurate estimates of glottal
closure. However, it is necessary to collect data from these sensors
concurrently with the acoustic data. A recent algorithm [6] pre-
sented a structure for creating glottal waveform estimates without
the reliance on precise glottal closure information. The algorithm
created several potential estimates per speech frame and then se-
lected the ”best” estimate based on a simple first order LPA. We
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ent here an improved decision structure for choosing glottal
eform estimates based on merging information from objective
sures of glottal quality.

2. Algorithm Structure
ils for the basic structure of the glottal estimation algorithm
in this study can be found in [6]. The algorithm implemented

terative scheme that searched areas around residual minimum
s for vocal tract estimates and subsequent glottal waveform
ations. The main components of the algorithm consisted of

following: 1) Average LP coefficients (covariance method)
multiple analysis windows (length = twice the model order)

rated by pitch cycles within the frame; 2) Generate and store
tal estimates; 3) Slide all analysis windows by one sample

ber of iterations equaled twice the model order); 4) Analyze
tored glottal estimates with a 1st order LPA and choose the
t” one. While much of this algorithm is still intact for this
y, a few minor improvements bare mentioning that involve the
od of averaging LP estimates and the size of the search re-
(affecting the number of stored estimates). It was determined

averaging the LP coefficients from each analysis window was
equate since it did not necessarily imply an averaged spec-
. Additionally, the pitch cycle from one epoch to the next
not exact and could lead to estimates that were at slightly dif-
nt phases of the cycle being averaged together. The solution
to treat the first analysis window as the primary analysis win-
and conduct the following steps: 1) Convert LP coefficients

epstral coefficients; 2) Search the region covered by the next
ysis window for the closest estimate via minimum Euclidian
nce between cepstral coefficients; 3) Average the cepstral co-
ients together and convert to the final set of LP coefficients.
produced smoother and more accurate vocal tract estimates
previously. Also, in [6], the search region for each analysis
ow was equal to twice the model order. It was determined that

size was insufficient for speakers who did exhibit long closed-
es so the search region was changed to equal three times the
el order. The final improvement to the algorithm involved the
lementation of a more robust decision structure for choosing
“best” glottal estimate, which will be discussed in the follow-
section.

. Rank Based Glottal Quality Assessment
primary feature of this algorithm structure is to automatically
se the “best” glottal waveform estimation from the stored esti-
s in a frame. This necessitates the ability to objectively com-
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Table 1: GQM Descriptions
Name Description

hrmn(X) Mean ratio of harmonic peaks (0-X Hz, X=1000,3700)
hrmx(X) Ratio of the first harmonic to the maximum harmonic

(0-X Hz, X=1000,3700)
R2

(X) Linear regression R2 statistic over (0-X Hz,
X=1000,3700)

GDvar Variance of the group delay function for a glottal cycle
Krt Kurtosis of the glottal waveform

ppcper Phase-plane (cycles/period)
ppcyc Phase-plane(mean sub-cycle length)

pare the stored estimates to one another without the need for vi-
sual inspection. While it is difficult to determine exactly what the
glottal waveform looks like, it should be possible to evaluate the
expected characteristics of an ideal glottal waveform. We have
investigated the use of Glottal Quality Measures (GQM) (to be
discussed in the following section) for assessing glottal waveform
estimations. However, decisions are inherently based on the ex-
tremum of the measures (e.g., the maximum or minimum value)
which are not always accurate. We have found it is more natural to
assume that good GQM’s should reliably establish trends among a
set of glottal waveform estimates (i.e., from relatively good to rel-
atively bad) without the “best” or “worst” necessarily being rep-
resented by the extreme values. Additionally, no single GQM is
designed to measure all of the qualities of a glottal estimate and
it is likely that the combination of GQM’s should produce better
results. We propose here a simple new technique for combining
multiple GQM’s for evaluating the stored glottal estimates in our
algorithm structure. We refer to this technique as Rank Based-
Glottal Quality Assessment (RB-GQA) and it is implemented in
the following steps:

1. For each GQM, rank each stored estimate from ‘1’ to the
number of stored estimates available (i.e., for N stored es-
timates, a rank of ‘1’ indicates the “best” of the stored esti-
mates for that GQM and rank of N indicates the worst)

2. Compute the average ranking across all GQM’s and choose
the estimate with the highest average rank

One advantage of RB-GQA is that it allows input from all of the
GQM’s in making a final decision. Another attractive feature is
that the decision is completely self-contained without the need of
knowledge of prior or future estimates. For the RB-GQA method
to be effective, careful consideration must be given to the GQM’s
that are used for ranking purposes. We present here an evaluation
of ten GQM’s including their implementation into the RB-GQA
decision structure.

4. Glottal Quality Measures
Glottal quality is a vague concept at best. However, the most no-
table characteristic of an ideal glottal waveform is that it should
exhibit little to no residual formant resonances (e.g., ripple). Ad-
ditionally, a glottal quality measure (GQM) for the RB-GQA deci-
sion structure should adhere to the principle that tracing the trend
of it’s extremum values reliably tends to better (or worse) esti-
mates. A list of the GQM’s evaluated for the RB-GQA decision
structure in this study is included in Table 1. Several of the GQM’s
to be considered in this study have been previously documented
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will not be covered in detail here. The motivation for using
group delay (GD) as a GQM was presented in [7]. Work in
oted that the phase spectrum over a single cycle of the glottal
should be essentially constant over a wide frequency range if

vocal tract estimation used to create the glottal estimate was
ect. We chose to measure the variance of the group-delay
var) for the glottal flow (computed over a single cycle) as

ould be expected that better estimates of the glottal waveform
ld have a variance close to 0. Kurtosis (Krt), which mea-
s the similarity of a distribution to the Gaussian distribution,
proposed as a GQM in [8]. The logic for it’s use was based
he understanding that convolution involves summing copies
e input signal at different time delays which should converge
Gaussian distribution. In [8] it was observed that the sub-
sian nature of the glottal waveform could me measured using

kurtosis as an indication of the accuracy of the deconvolution
ation performed by inverse-filtering (a lower value indicated
gher accuracy). Also presented in [8] were GQM’s based on
e-plane analysis. These measures relied on the assumption
the glottal waveform can be modelled as a second order har-
ic equation, which implies that its plot in the phase-plane (x(t),
t) should consist of one closed loop per fundamental period.
nances not completely removed by inverse filtering appeared
b-cycles within the fundamental loops. The phase-plane plots
quantified by measures reflecting the number of cycles per

amental period (ppcper) (i.e., fewer cycles reflected better es-
tes) and the mean sub-cycle length (ppcyc) (i.e., smaller sub-
es reflected better estimates) as described in [8].

Six new GQM’s were proposed for this study based on the
onics created in a single cycle of the glottal derivative esti-
. Ideally, the spectrum of the glottal waveform should exhibit
ictly negative spectral slope due to the lack of resonant struc-
. If formant residuals are present, this linear trend is disturbed.
proposed GQM’s based on the following: the mean ratio of
first harmonic peak to other peaks over a frequency range X

n(X)), the ratio of the first harmonic peak to the maximum
present over a frequency range X (hrmx(X)), and the linear

ession R2 statistic over a frequency range X (R2
(X)). Ideally,

first harmonic peak should tend to be greater than successive
s to adhere to the negative linear trend expected from an ideal

tal waveform. Deviations from this can create ratios that are
ter than one and indicate worse glottal estimates. Addition-
the linear regression R2 statistic can be used to judge the

opriateness of a linear fit over a given frequency range (better
ates should be indicated by higher values for the R2 statis-
One of the frequency ranges used for these GQM’s was an

ysis of the log-spectral peaks from 0-1000 Hz. This frequency
e was used to cover the significant area of any residual 1st
ant energy (which is normally the largest culprit in formant

le). Additionally, the frequency range covering 0-3700 Hz was
to cover the most significant area of human speech produc-

. Figs. 1 and 2 show examples and the resulting measurements
e harmonic ratio and linear regression GQM’s for a poor and
r glottal estimate, respectively.

5. Experimentation and Results

purpose of this study was to evaluate the GQM’s described
e as well as test the usefulness of the RB-GQA decision struc-
in the glottal estimation algorithm. To accomplish an effective
uation it was determined that a reasonable requirement for a
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Figure 1: Poor Glottal Estimate
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Figure 2: Better Glottal Estimate
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Figure 3: EGG (Dashed) and EGG Derivative (Solid)

M was that it should tend to exhibit it’s best performance within
closed region of the glottal phase. The closed phase of the glot-
aveform is, theoretically, the optimum place for vocal tract es-
tion and, therefore, glottal waveform estimation. Accurately
ting GCI’s is non-trivial so the data used for this experiment
sisted of 9 males uttering a single vowel for which consecu-
EGG recordings had been made. The recordings were made at
kHz sampling frequency and the EGG’s signals were shifted

ropriately to account for recording delay. The GCI information
extracted from the peaks of the EGG signal. The closure re-
of the glottal waveform was identified as the area surrounding

GCI peaks in the EGG waveform as shown by the boxes in Fig.
hile the relationship between the length of the closed/open

se and the EGG waveform is not exact, we defined the glottal
ure area around the GCI’s by utilizing the EGG derivative to
te the points of maximum rise (to indicate the onset of glot-
losure) and maximum descent (to indicate the onset of glottal

ning) in the EGG waveform. The glottal algorithm from [6]
modified to use the GCI information from the EGG signal to

ne a search area for the vocal tract estimate. A sample-by-
ple sliding covariance analysis window was utilized to make
al tract/glottal waveform estimations. Each analysis window
the length of twice the linear prediction model order (model
r was manually selected for each speaker between 14 and 18
d on subjective evaluation of performance). The sliding analy-
egan where the covariance window’s rightmost edge touched
Table 2: Percentage of glottal estimations taken from the closed region
hrmn(1000) hrmx(1000) R2

(1000) hrmn(3700) hrmx(3700) R2
(3700) GDvar Krt ppcper ppcyc RB-GQA

S1 0.90 0.75 0.85 0.65 0.75 0.50 0.70 0.30 0.80 1.00 1.00
S2 0.00 0.00 0.00 0.00 0.00 0.30 0.65 0.10 0.30 0.10 0.90
S3 0.80 0.75 0.50 0.95 0.75 0.05 0.20 0.90 0.45 0.05 0.75
S4 0.90 0.90 0.90 0.90 0.90 0.05 0.25 0.00 0.90 0.90 0.90
S5 0.65 0.20 0.30 0.45 0.20 0.30 0.35 0.15 0.55 0.60 0.85
S6 0.65 0.60 0.65 0.60 0.60 0.50 0.65 0.25 0.85 0.90 1.00
S7 0.80 0.85 0.90 0.70 0.85 0.45 0.10 0.45 0.40 1.00 1.00
S8 0.95 0.95 0.95 0.95 0.95 0.80 0.80 0.00 0.65 1.00 1.00
S9 0.30 0.20 0.65 0.25 0.20 0.60 0.40 0.55 0.65 0.55 1.00

AVG 0.66 0.58 0.63 0.61 0.58 0.39 0.46 0.30 0.62 0.68 0.93
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Figure 4: Glottal Wave Estimation (S1)

a GCI (as indicated by the EGG signal) and continued sample-by-
sample over a range of three times the model order. In this man-
ner, glottal waveform estimations were created from vocal tract
estimates taken before, during, and after the point of closure. The
GQM’s described previously were then extracted for each of the
stored glottal waveform estimates per frame and the “best” glot-
tal waveform was recorded for each GQM. Additionally, all of the
GQM’s were implemented into the RB-GQA decision structure
for choosing the “best” glottal estimate. The percentage of glottal
waveform estimates that resulted from choices where the analysis
window was actually in the closure region were recorded for each
of the GQM’s across 20 frames for each of the 9 male speakers
(S1-S9). The results are shown in Table 2. On average, the best
individual GQM’s were related to the mean harmonic ratio and the
phase-plane measures where over 60% of the analysis estimations
resulted from the closed phase regions across the speakers. How-
ever, for S2, none of the GQM’s performed well individually as
the best estimates indicated by the GQM’s rarely (save in the case
of GDvar) fell in the closed area region. The results from imple-
menting the RB-GQA strategy resulted in marked improvement
overall. The best average performance from a single GQM was
the phase-plane measure of the mean cycle length (ppcyc) at 68%
On average, the RB-GQA decision structure improved the number
glottal waveform estimations taken from the closed phase region
by 25%. A notable sign of the improvement by the RB-GQA de-
cision structure is for S2 where many of the GQM’s had failed
individually to choose estimations from within the closed region
and the RB-GQA achieved a rate of 90%. Figs. 4 and 5 show two
examples of the glottal waveform estimations resulting from using
the exact glottal closure instant from the EGG (top graph) and the
RB-GQA algorithm. The star indicates the GCI indicated by the
EGG signal while the circle indicates the analysis point chosen for
the glottal waveform estimation by the RB-GQA. While the RB-
GQA decision does not locate the GCI (it was never intended to),
it does locate a viable point of analysis within the closed phase
region.

6. Conclusion
The work presented here introduces a new structure for combining
multiple GQM’s in making automated decisions regarding glottal
waveform estimations. While the current realization of this algo-
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Figure 5: Glottal Wave Estimation (S9)

is computationally intensive, this is not a major issue for
ications that utilize offline voice analysis. Research is ongo-
for narrowing the size of the stored estimates, improving the
ing procedure, and evaluating the use and number of GQM’s
duce the computational burden.
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