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Abstract

Spoken word recognition involves selecting one word out of
many competing candidate word-forms. However, there i s
disagreement as to what candidates actually compete with
each other given a particular signal, though similarity i s
commonly invoked. We investigate whether the word
similarity literature, drawing from explicit similarity
judgments of word forms, can speak to this current state of
confusion. Many word similarity models emphasize the
primacy of featural overlap. With a single set of stimuli, we
find that featural overlap and overlap position influence a
non-time-pressured lexical learning task as well as explicit
similarity judgments. The implications for appropriate
metrics of similarity in word recognition and models of word
similarity are discussed.
Index terms: spoken word recognition, featural similarity,
confusability metric, artificial lexicon

1. Introduction

There is general agreement that the process of spoken
word recognition involves selecting one word out of many
competing candidate word-forms. There is considerably less
agreement as to which candidates actually compete given a
particular signal, though competing words are usually
described as “similar” to the correct word. The Cohort model
of word recognition [1] suggests that words are activated to
the degree that they match the acoustic input at a given point
in time. This tends to favor candidate words that match
initial portions of the input (i.e. “cohorts”). Ambiguity in
word recognition is dominated by competition among words
that overlap at onset.

A largely separate literature considers word similarity
[2,3,4] and finds strong effects of featural similarity. These
featural similarity models are often based on explicit
similarity ratings, not on tasks that explicitly tap lexical
processing. For instance, in an XAB similarity judgment
task, Hahn and Bailey [3] find greater sensitivity to featural
differences in coda position than in onset position. If coda
sensitivity is greater, then words differing by their codas are
less similar than words differing by their onsets. This
suggests that the greatest ambiguity or confusion would
arise among words that overlap in their rime. Here we
examine similarity in both word recognition and in
similarity judgment, using stimuli of the sort typically used
in the literature on explicit similarity judgment.

Word recognition and word similarity studies are often
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arallel on a number of dimensions. First, it is rare for
ical sets of stimuli to be used between word recognition

es and word similarity or confusability studies. Thus,
rences in outcomes between similarity judgment and

recognition tasks (e.g. priming and lexical decision)
derive from the processing demands of the tasks, or
ly from differences in the stimulus sets. Another
nct between these two literatures is that, while

larity judgment tasks are not time-pressured, word
gnition tasks regularly rely on time-pressured measures
use it is otherwise difficult to achieve any variance in
rmance among the familiar words that serve as stimuli.
r time pressure, participants may respond (e.g. with a
al decision) before they have finished processing the
e word. In eyetracking tasks without explicit time
sure, competition effects may derive primarily from
ions driven by initial portions of the speech signal.
r procedure could lead to an emphasis on word-initial
mation that overestimates its importance in day-to-day

recognition.
he present study is an attempt to evaluate the

icability of feature-based similarity models to the word
nition process. We use a single set of stimuli in both a
al task and a similarity judgment task. Thus, we can
are similarity ratings and actual word recognition data

he same stimuli. Additionally, the lexical task we use
ses no time pressure. Therefore, any onset effects we see
ot simply result inevitably from responses made based
artial (word-initial) information.
articipants learned a carefully constructed set of novel
s as labels for unfamiliar pictures [5,6]. We then
sed which words were likely to be mistaken for one
er in a picture verification task. Our dependent measure
the false alarm rate (incorrect “yes” responses to a
beled picture) to various types of similar words. Such a

f novel words balances the stimulus requirements for a
ure of lexical access and a measure of word similarity,
h is often appraised with nonsense words to avoid
ntic or morphological interference [2]. Following the
re verification task, participants made similarity ratings
ord pairs drawn from the set of learned words.

2. Method

Participants

articipants (N = 17) were native English speakers and
undergraduates at the University of Pennsylvania.

September 17-21, Pittsburgh, Pennsylvania



2.2. Stimuli

We constructed an artificial lexicon of 32 novel consonant-
vowel-consonant (CVC) words (Table 1). Participants learned
the words as labels for 32 novel black-and-white shapes,
previously used in other word-learning experiments [6,7].
The lexicon was designed to include as many types of
similarity relations between CVCs as possible. The words
were constructed from a set of 8 onset consonants, 8 vowels,
and 8 offset consonants.

Words Onsets Codas

d�up t�up

d�ub t�ub
Similar Similar

�id� kid�

�it kit
Similar Dissimilar

bæf sæf

bæv sæv
Dissimilar Similar

p��t� p��d

z��t� z��d
Dissimilar Dissimilar

Table 1. Examples of the 32 stimuli used in the current

experiment. The “wrong” labels that could occur for “bæf”

are indicated with arrows. Four-word groups shared similar or
dissimilar onsets and codas as indicated.

The two sets of consonants (p, b, d�, t�, s, z, g, k at onset; p, b,

d�, t�, f, v, d, t at coda) were selected to maximize featural

variation in both positions, while insuring a number of
segments in each position differing by a single

phonological feature (voicing). The vowels used were (u, �,

a�, i, æ, a�, ��, �). In each position, each segment occurred in

exactly 4 words.
Within the set of words to be learned, there were sets of

eight that were phonologically related. In each set, four
words had one vowel and four had a different vowel. The four
words sharing a vowel (see Table 1) were constructed such

that, defining word 1 (e.g. /bæf/) as the "target," word 2

shared the first two segments (a cohort competitor, /bæv/)

and word 3 shared the last two segments (a rhyme

competitor, /sæf/). Word 4 shared only the vowel (/sæv/). For

each of the two coda consonants between cohorts (/bæf/,

/bæv/), the coda consonants could differ by a single

phonological feature (voicing) or multiple features. This was

also true of the onset consonants in rhyme items (/bæf/,

/sæ f/). Thus, each word (/bæ f/) had several potential

competitors (words sharing some segments). The primary
competitors of interest for the current study were the cohort
and rhyme. Both overlap by two contiguous segments, and
share a C and a V.

Recordings were made in a quiet room with an Edirol
UA5 audio capture USB interface to a PC, by a female native
English speaker from Pennsylvania who read from
randomized word lists. The experimenter selected tokens that
were the clearest in segmental content, free of noise artifacts,
and uniform in prosodic quality.
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Procedure

articipants completed three parts of the experiment:
ing, testing, and similarity rating, taking 30-40 min in
. In the first phase, participants learned names for 32
es over 512 trials. They were not informed that there
d be a test later, but were told that this was the first part
e experiment and were requested to “pay attention as

were] learning these words.” On each trial, a picture
ared and simultaneously its label was played. The
re appeared slightly to the left of center on 50% of
, and slightly to the right on the other 50%. The

cipant indicated, using the arrow keys on the number
ad (4 and 6), the side on which the picture had appeared.

left-right manipulation served merely to keep
cipants attentive. In each of 16 blocks of 32 trials, each
re-label combination appeared once. The order of the
within a block was random. Across participants, four

rent random picture-word assignments were used.
n the second phase, participants completed 4 blocks of a
re verification task (128 trials). A trial consisted of the
ltaneous presentation of a picture and a spoken CVC
. Participants were asked to respond "yes" when the
was the correct word for that picture, and "no" when the
was incorrect, again using the 4 (no) and 6 (yes) keys.

label was correct 25% of the time. On the incorrect trials,
resented the picture labeled with its cohort competitor,
resented the picture with its rhyme competitor, and 1/3
nted the picture with a phonologically unrelated item
the newly-learned lexicon. Trials were counterbalanced
at within each block of 32 trials, each picture only

rred once and each label only occurred once. Blocks
rred in different orders for different participants.
inally, participants completed 2 blocks of a similarity-

g task (64 trials). Pairs of words were spoken with a 500
nterstimulus interval. On these trials, a rating scale was
nt throughout to remind participants to rate each pair as
ws: 0 if the two words were identical; 1 if the two words
very similar, ranging to 7 if the words were extremely

milar. These trials were identical to the first two blocks
ials the participant received, except that the picture-word
ng was replaced with a word-word pairing. For instance,
l that during the picture verification task consisted of a

re learned as /bæf/ with the verbal label "sæf" would, in

similarity task, consist of the sequence of words "bæf

3. Results

he lexical learning data (Figure 1) are analyzed in terms
es" responses. Note that for correctly-labeled objects,

" is the right response, but for all other trials, i t
titutes a false alarm. The rate of false alarms is assumed
flect the degree to which the learned label and the

ented lure label are lexically confusable, in effect
ping out a “tuning function” for word detection. Two
cipants were excluded for having “yes” rates no higher
rrect than to unrelated items. In keeping with previous
ts (e.g. [6]), cohorts showed the highest false alarm
, with rhymes lagging behind, and phonologically

lated items showing a relatively low rate of false alarms
re 1). There were also effects of featural overlap in both
rt and rhyme trials.



These effects were confirmed with a 2-factor ANOVA with
Featural Similarity (similar [voicing difference] vs.
dissimilar [3 featural differences]) and Overlap Position
(initial vs. final) as factors. There were main effects of
Featural Similarity (F1(1,14) = 18.87, p = .0008; F2(1,60) =
67.9, p < .0001), with higher rates of "yes" when target and
lure-label differed only by a single feature, and of Overlap
Position (F1(1,14) = 32.48, p < .0001; F2(1,60) = 49.75, p <
.0001) such that initial overlap (cohort similarity) led to
higher rates of "yes" responses. There was no interaction
(F1(1,14) = 1.78, p = .2; F2(1,60) = 1.99, p = .16).

Similarity data (Figure 2) were analyzed after a simple
linear transformation (1-rating/7) so that the most similar
items received the highest ratings, and the ratings ranged
from 0 to 1. In the similarity data, we compared perceived
similarity for pairs of words. Cohort words were judged more
similar to one another than rhyme words were to one another,
while one-feature-different (“similar”) words were rated much
more similar than multiple-feature-different (“dissimilar”)
words. It is also worth noting that the distribution of “yes”
responses in the picture verification task is more
continuously graded from condition to condition than the
similarity data, which are essentially at ceiling and floor for
identical and unrelated word pairs, and in a compact middle
ground for cohort and rhyme pairs.

We confirmed this appraisal of the similarity ratings
with a 2-factor ANOVA, again using Featural Similarity and
Overlap Position as factors. There was an effect of Featural
Similarity (F1(1,14) = 51.34, p < .0001; F2(1,60) = 62.17, p <
.0001), with high-similarity words judged more similar than
low-similarity words (.59 vs. 44), and a effect of Overlap
Position (F1(1,14) = 5.8, p = .03; F2(1,60) = 11.14, p = .002),
with cohorts being judged more similar than rhymes (.55 vs.
.48). There was no interaction (Fs < 1).

4. Discussion

Using a single set of stimuli, we found intriguing effects
of featural overlap and position of overlap in both a word
recognition task and explicit similarity ratings. The most
significant findings with respect to our goal of defining
word similarity as it functions in word recognition are the
effects of these factors in the lexical learning task. First, we
found an effect of featural similarity: more featurally-similar
words were more likely to be mistaken for one another. This
supports feature-based, not just segment-based (e.g. the
Shortcut Rule, [8,4]), computations of word similarity in
word recognition models. We also found effects of position
of overlap: words that overlapped initially were more likely
to be mistaken for one another than words that differed
initially and overlapped later.

The position-of-overlap effect, while typical of word
recognition generally, cannot be dismissed as an artifact of
attention only to early portions of the signal. Learners were
under no explicit time pressure. Importantly, the rate of false
alarms varied by degree of featural similarity in the final
segment: if cohort-trial responses were based simply on the
initial segment(s) of words, no effects of final-segment
similarity would have emerged in the cohort trials. Thus, this
initial overlap effect must be inherent to lexical processing
and not an artifact of early responding.

The similarity judgment results are also tantalizing.
Consonant with much of the work using word similarity
judgments (e.g. [9,2,3]), we find strong effects of featural
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Figure 2 Transformed similarity ratings for pairs of CVCs.

larity. Surprisingly, and at odds with the similarity-
ment literature (and our own intuitions), we also saw
ts of position of overlap. The results of [3] are
cularly difficult to reconcile at first glance. The
rences may be due to the fact that participants had
ed meanings for all words tested, or the particular

larity judgment tasks used. Nonetheless, in the larger
ext of feature-based models of word similarity
ments, it is clear that featural mismatch alone is
ssary but not sufficient to explain our lexical
gnition data.
ur work has interesting implications in both the word

gnition and word similarity domains. In word
nition, our lexical learning data speak to an unresolved
of lexical “neighborhood” relationships (what words
the competitor set of a spoken word). On the one hand,
ara and Goswami [10] show that many words have large

bers of rhyme competitors, especially words with many
hbors. They argue that, given this information, many
ts of neighborhood density may be carried by these
e neighbors. On the other hand, Vitevitch [11] has

d evidence that cohort neighbors have a predominant
ence on shadowing and lexical decision times. The
nt study suggests that they may both be right: while

(most
sim.)



cohort competition is robust, high featural similarity may
make for strong rhyme competitors. Lower featural similarity
rhyme words, due to their lack of confusability, might be
allowed to proliferate unchecked in the lexicon, contributing
to [10]’s results.

The implications for word similarity judgments
primarily concern the role of order information. In our task,
order information played a role in similarity judgments,
counter to featural similarity models that do not explicitly
account for position of overlap. It may be that the learning
task that preceded the similarity judgment task influenced
similarity ratings. Continuing this line of reasoning, if
lexical experience with a word can change its perceived
similarity to other words, perhaps by reallocation of
attention to various dimensions (e.g. [12], then explicit
similarity judgments of nonwords may not be able to render
the transient lexical similarity effects that populate the word
recognition literature (or in our work, the lasting similarity
effects; see also [6,7]).

5. Conclusion

Models of similarity judgments suggest that featural
overlap predicts performance. In our lexical learning task,
not only featural overlap but also position of overlap is a
crucial factor in explaining word confusions. This is true
despite the fact that our task imposes no time pressure.
Moreover, using the same set of stimuli, we find that
position of overlap may influence similarity judgments.
This work demonstrates that the asymmetry between
similarity judgments on the whole and word recognition
performance merits continuing investigation.
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