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Abstract

Accurate classification of dialog acts (DAs) is important for many
spoken language applications. Different methods have been pro-
posed such as hidden Markov models (HMM), maximum entropy
(Maxent), graphical models, and support vector machines (SVMs).
In this paper, we investigate using SVMs for multiclass DA classi-
fication in the ICSI meeting corpus. We evaluate (1) representing
DA tagging directly as a multiclass task, and (2) combining multi-
ple binary classifiers via error correction output codes (ECOC). For
the ECOC combination, different code matrices are utilized (e.g.,
the identity matrix, exhaustive code, BCH code, and random code
matrix). We also compare using SVMs with our previous Max-
ent model. We find that for DA tagging, using multiple binary
SVMs via ECOC outperforms a direct multiclass SVM, but nei-
ther achieves better performance than the Maxent model, possibly
because of the small class set and the features currently used in the
task.

Index Terms: dialog act classification, SVM, maximum entropy,
error correction output code.

1. Introduction

Dialog act (DA) represents certain kind of discourse structure in
conversations (either human-to-human or human-to-computer). In
spoken dialog systems, automatic identification of the utterance type
(i.e., DA) is an important task. With the growing interest in process-
ing multiparty meeting corpus, accurate classification of DAs will
play a vital role for automatically understanding and summarizing
meetings.

Several machine learning techniques have been investigated for
effective DA classification [1, 2, 3, 4, 5, 6]. Because of the success
of the SVM in many applications, in this work we employ SVM for
the DA classification task. Since SVM is mostly used in binary clas-
sification tasks, we investigate using error-correcting output codes
(ECOC) for combining multiple binary SVMs, in addition to the
direct multiclass SVMs. We also compare SVMs to the maximum
entropy (Maxent) model used in our previous work for this task.
Note that in this paper all the approaches use supervised learning,
i.e., we used the training data that is labeled with DA tags. In [7],
we have investigated the effect of active learning and weakly su-
pervised learning using the HMM and Maxent for the task of DA
classification.

The rest of the paper is organized as follows. Section 2 de-
scribes the related work and the techniques we investigate in this
paper, including the SVM and the ECOC. Section 3 presents the
experimental results for DA classification using various approaches.
Discussion and future work appear in Section 4.
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2. Methods
. Previous Work

ny studies have been conducted for DA classification in order to
cess either human-human or human-computer dialogs [1, 2, 3,
, 6], using different machine learning techniques, such as Max-

, DBN, HMM, and SVM. These methods adopted different rep-
entations for the DA tagging task. For example, given a vector
features associated with a DA unit, the Maxent classifier directly
imates the conditional probability of the DA tag for each unit [1].
HMM [3], the “hidden” states are the DA tags, which generate
sequences of words as observations. A DA grammar N-gram
provides the transition probability between the DA tags, and a
specific N-gram word-based LM provides the observation prob-

lity. Different knowledge sources have been explored in the pre-
us work for DA classification, including both prosodic features
textual cues.

. Support Vector Machines (SVM)

Ms have achieved comparable or significantly better performance
any classification tasks. It was originally designed for a binary

ssification problem, in which a hyperplane is determined with
maximum margin to the ‘support vectors’. For a multiclass tag-
g task,1 many methods based on SVMs attempt to build multiple
ary SVM classifiers (e.g., one versus else or a pair wise scheme),
then combine them to obtain the final class hypothesis for a test
ple. The multiple classifier combination problem can also be

ved in a general framework using ECOC, with more description
he next section.
Using multiple binary classifiers generally requires a number

classifiers, leading to more computational complexity. There-
e, learning a discriminative function that distinguishes multiple
els at the same time can eliminate the need of building many
ssifiers, and can potentially utilize the dependencies among dif-
ent labels as well. Learning such a function can be implemented
maximizing the margin between the best hypothesis and the oth-
. See [8, 9] for more details on the optimization algorithms and
implementation for the multiclass SVMs.

. Combining Multiple Binary Classifiers via ECOC

e idea of using error correcting output codes (ECOC) [10] is to
id the direct multiclass problem by breaking the multiclass task
several binary classification tasks and then combining the re-

ts from these indirect classifiers. ECOC has been used in several
guage processing tasks on top of different base classifiers, for
mple, naive Bayes and conditional random fields [11, 12].

1This means that there are more than 2 class tags in the data set; however,
h data point only has one class associate with it.
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The following matrix shows an example code matrix for a task
with 4 classes (Ci), using 5 base classifiers (Si).

C1 C2 C3 C4

S1 1 0 0 0
S2 0 0 0 1
S3 1 0 1 0
S4 0 1 1 0
S5 0 1 1 1

In the code matrix above, each class Ci is associated with a
codeword (i.e., the column vector). Each classifier Si is trained to
perform a binary classification task, that is, to distinguish the two
subsets of the classes labeled with 1 and 0, respectively.2 During
testing, a vector of scores [o1, o2, ..., o5] is generated by the 5 binary
classifiers for each test sample. This vector is then compared to each
codeword, and the one with the minimum distance is chosen as the
hypothesis.

There are two problems in this framework, the design of the
code matrix and the distance measure. To design a good code ma-
trix, a general idea is to have large row and column separation. The
columns in the code matrix3 are the codewords (i.e., corresponding
to different classes), hence the larger the distance among them, the
more likely that a correct hypothesis is obtained even with errors
from some classifiers during testing. In coding theory, the number
of errors that a code is guaranteed to be able to correct is

�Hc − 1

2
�

where Hc is the minimum Hamming distance between any pair of
the codewords. The row vectors in the matrix represent different
classifiers. In order to achieve an effective ensemble of multiple
classifiers, it is better to have classifiers that have low correlations
and make different errors, in the hope that they will combine ef-
fectively. However, there is no well-defined measurement for the
diversity of different classifiers in an ensemble approach, especially
when these classifiers conduct different classification tasks.

Two methods can be used for the distance measure. One uses
the hard decision generated by each classifier (composed of 1 and 0,
or -1 depending on the representations of the code matrix) and com-
pares it to the template codeword using the Hamming distance. The
other method preserves the soft decision from the binary classifiers.
For example, in a 0/1 labeling task, if the classifiers generate the
posterior probability or confidence for a test sample, the distance to
the codeword Ci is:

d(i) =

NX

k=1

|p(k, i) − M(k, i)| (1)

where N is the total number of classifiers, p(k, i) is the posterior
probability generated by the classifier Sk corresponding to the class
Ci (or more correctly, the class group which Ci belongs to), and
M(k, i) is the bit value in the code matrix.

3. Experiments
3.1. Experimental Setup

3.1.1. Data

We used the ICSI Meeting corpus that consists of 75 naturally-
occurring meetings. Each is roughly an hour in length and has about

2Note that we use 1 and 0 in this code matrix. Typically -1 is used in
stead of 0 in SVM classifiers.

3Note that in the literature, sometimes the code matrix is represented as
the transpose of the matrix as shown in our example, therefore the row and
columns are switched.
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articipants in average. DA units were manually labeled for this
pus using a fine grained set of tags [13]. In this paper, similar to
previous work [1], DA tags are grouped into 5 broad intuitive

sses along the lines of [14] – Backchannels (B), Disruptions (D),
lers (F), Questions (Q) and Statements (S), with the prior distri-
ion of 13.3%, 14.1%, 7.2%, 6.4% and 59.0% respectively. We
domly split the entire corpus and used 55 meetings for training,
for development, and 10 for evaluation. Table 1 describes the
a used in this experiment. Human transcriptions are used in this
dy in order to factor out the effect of speech recognition errors

focus on the machine learning aspect of the problem. Also we
ume the word sequences are segmented into DAs and the task
o determine the type for each DA. In a real scenario of auto-
tic processing of the meeting data, there is a negative impact
m the speech recognition errors and the imperfect DA segmenta-

as well [1].

training test
number of meeting 55 10

number of DAs 82k 12k
number of words 606k 95k

Table 1: Data description.

.2. Features for DA Classification

the Maxent classifier [7], we used the features including those
racted from the current DA unit: the length, the identity of the
t two words, the identity of the last two words, and a bigram of
first two words; the identity of the first word of the next DA unit,
a flag indicating whether or not there is a speaker turn change

en this utterance starts. In our previous work, DA contextual
ormation did not yield much gain, therefore for this study we
ose to treat this task as a simple local classification task, rather
n a sequence decoding problem, which relies to a great deal on
contextual tag information. Note that we do make use of con-

tual information extracted from the neighboring utterances (not
ir DA types).
In addition to these features, we investigated some features de-

ed from the DA specific word N-gram LMs that are trained from
utterances with a particular DA. Given a test utterance, we cal-

ate the perplexity (PP) using each of the DA LMs. Then based
the five PPs, we generate the following features: the best and the
ond best DA hypotheses, and the ordering of the five LM PPs. A
k-knife (or round-robin) paradigm is used to generate these fea-
es for the training set. The training set was split into n subsets,

for each subset, the PPs were generated using the LM trained
m the other subsets. The PPs for the test set were calculated
ng the LM that was trained from the entire training set. In this
dy we do not use any prosodic features, which have been shown
slightly improve DA classification performance [1]. We plan to
orporate those features in our feature work.

.3. Code Matrix

s not straightforward how to design a code matrix to have good
aration in both rows and columns. For classifier combination,
performance is also related to the classifiers and their perfor-

nce, and the properties of the classes and their grouping. In our
eriments, we evaluated four different code matrices, described
ow.

• Identity matrix.

This is equivalent to using the one versus else framework



used in many multiclass tasks. In this approach, n (equal
to C, the total number of class labels) binary classifiers are
built, each of which learns to distinguish one class versus the
others. The code matrix is an identity matrix, that is, 1 for
all the diagonal items and 0 elsewhere. Due to space limit,
we do not show the matrix here.

• Exhaustive matrix.

For C classes, all the possible different classifier arrange-
ments are exhaustively used in the code matrix. If C is large,
the computational cost is a potential problem. In addition,
there may also be redundancy among different classifiers,
which affects the diversity and the effectiveness of their com-
bination. For the DA classification task, there are 5 classes,
resulting in 2C−1 − 1 = 15 different arrangements in total.
Each of the 15 rows in the code matrix corresponds to a clas-
sifier Si. We set 1 for the code word corresponding to class
C1, and the rest 4 bits in the ith row vector are the binary
representation of i. For example, for classifier S6, the row
vector is [ 1 1 0 1 0 ].

• Random matrix.

In this method, the code matrix is generated randomly. We
used 5 classifiers for this case. The matrix with the largest
sum of the row separation and column separation among T
generations is selected. The code matrix we used is shown
below.

c1 c2 c3 c4 c5
S1 1 1 1 0 0
S2 0 0 1 1 0
S3 1 0 1 1 1
S4 0 1 1 0 0
S5 1 0 0 1 0

• BCH code matrix.

BCH code is one specific type of Reed-Solomon codes in
coding theory [15], which guarantees certain correction abil-
ity (i.e., via the column separation among the codewords);
however, for the application of classifier combination using
error-correcting codes, a good row separation is also critical.
We selected 7 rows from the BCH (15,5) code as our code
matrix, which is shown below.

c1 c2 c3 c4 c5
S1 0 1 1 1 0
S2 0 1 1 0 1
S3 0 0 0 0 1
S4 1 0 1 0 0
S5 0 0 0 1 0
S6 1 1 0 0 0
S7 1 0 1 1 1

3.1.4. Distance Measure in ECOC

For classifier combination, we use hinge loss for the distance mea-
sure between the vector of the SVM scores and the template code-
words. Let vk = lk ∗ Mkj , where lk is the SVM score from the
classifier Sk, and Mkj is the bit in the code matrix (corresponding
to classifier Sk and class Cj), the distance to the kth element of the
code word Cj is:

d(k, j) = 1 − vk if vk < 1

0 otherwise

and the total distance d(j) to the code word Cj is
P

k d(k, j).
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Note that the decision for each DA unit is made individually,
hout considering the tags of the neighboring utterances. Con-
y to this, if the ECOC approach is used in a sequence decoding
blem (e.g., conditional random fields [12]), the decision for each
nt cannot be made separately.

. Results

formance for the DA classification task can be easily evaluated
ng the classification error rate (CER), i.e., the number of incor-
tly classified DAs divided by the total number of DAs.

.1. ECOC Code Matrix

le 2 shows the results using different code matrices as described
lier, along with the distance for each code matrix. For all the
e SVM classifiers, SVM-light [16] was used with the default pa-
eters. Surprisingly the impact of different codes is marginal.

e distance shown in the table is the minimum row/column dis-
ce. It does not take into account the classifiers’ performance
., for which class groups a classifier makes errors), the distribu-
of the different classes, or the confusion among different class

s. Apparently a large distance does not guarantee an overall good
ssification performance.

code matrix CER (%) row dist. column dist.
Identity 23.44 2 2
Random 22.91 1 2

BCH 23.78 2 3
Exhaustive 23.16 1 8

le 2: DA classification error rate using multiple binary SVMs
bined via ECOC. The minimum row and column distances are

o presented.

.2. Multiclass SVM

le 3 shows the DA classification results using the direct multi-
ss framework [9], along with the ECOC result using the identity
trix, which is the widely used method for combining binary clas-
ers. The multiclass implementation does not perform better than
OC combination for the DA tagging task. It has been reported
t the multiclass approach outperforms the combination of multi-
binary classifiers in some applications. We will look into this in
future work and investigate whether some inherent property of

articular task explains the difference.

CER (%)
ECOC SVM (identity matrix) 23.44

Multiclass SVM 23.93

le 3: Comparison of the direct multiclass SVM and combining
ltiple binary SVMs via ECOC using the identity code matrix.

.3. Maxent and SVM

our previous studies, Maxent achieved better performance than
HMM [7], therefore we will only compare the SVM results to
xent. Another reason that we choose to compare Maxent with
Ms is that both of them formulate DA tagging as a classification
k, whereas HMM and DBN use sequence decoding.

For Maxent, a direct multiclass is straightforward, since it es-
ates directly the conditional probability P (Ci|O). This is the
roach used in our previous work [1, 3]. In order to compare



with SVMs, we also evaluated the ECOC combination of the Max-
ent classifiers using the same code matrices as used for SVMs. We
examined two different distance measures: hard decision or soft de-
cision that preserves the posterior probabilities as shown in Equa-
tion (1). The exhaustive code matrix was used for this comparison
due to its comparable performance and the straightforward design
of the code.

Table 4 shows the results comparing the Maxent and SVM for
the DA classification task. The Maxent model compares favorably
to the SVM method. The direct multiclass Maxent performs sig-
nificantly better than ECOC combination of the Maxent base clas-
sifiers, suggesting that the direct Maxent approach may be able to
capture some discriminative features that directly distinguish differ-
ent classes.

CER (%)
Multiclass 20.94

Maxent ECOC hard 22.76
ECOC soft 22.10

SVM Multiclass 23.93
ECOC 23.16

Table 4: DA classification error rate (%) using the Maxent and SVM
classifiers.

3.2.4. Features

In all the results reported above, the same features were used as
those in our previous work [1, 7]. After adding PP-related features
generated from the DA specific word N-gram LMs as described in
Section 3.1.2, we found that there is a slight improvement in clas-
sification performance (error rate of 20.94% versus 20.54%) in the
Maxent classifier. Similar performance is also observed in SVMs.

4. Discussion
We have investigated utilizing SVMs for multiclass DA classifica-
tion in the multiparty ICSI meeting corpus. Various techniques are
studied, either using a direct multiclass SVM or combining multiple
binary SVM classifiers via the general ECOC scheme. For this task,
we found that the code design does not have a significant impact on
performance. The combination of multiple binary SVMs via ECOC
achieves better performance than a direct multiclass SVM. We also
compared SVM classifiers with our previous work using a Maxent
model, and found that Maxent outperforms the SVM approach, and
that in contrast to SVMs, combining multiple Maxent classifiers via
ECOC is not as good as a direct multiclass Maxent model.

We believe that these experiments are still preliminary and that
the results are task and features dependent. More analysis is needed
for the errors made by different classification approaches and the
impact of different training size. Due to the limited feature set used
here and the inherent ambiguity of the task, there may not be much
gain that can be possibly achieved by combining multiple binary
SVMs via ECOC. However, the study in this paper sets a general
framework that allows us to investigate the DA classification task
using various features and different DA classes. In the current task
setup, there are only five classes, which limits the choices of the
code matrix. When there are more classes involved, it is likely
that there is more room for performance improvement using bet-
ter code matrix. For code design, linguistic knowledge may also
provide helpful guidelines on how to group the DA class tags into
subgroups for large discrimination between clusters. In addition,
we believe that there is interaction between the base classifiers’ per-
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mance and the distance of the codewords that also affects the
rall performance.
In future work, we plan to investigate incorporating more fea-

es in the classifiers, in particular the prosodic features, which
p resolve ambiguity in some cases (e.g., a question using a sur-
e statement representation). Improving base classifier perfor-
nce by utilizing more discriminative features will also help sub-
uent classifier combination. We will study different DA class
s (e.g., a more fine grained DA tags) and investigate the pos-
ility of better code matrix design. Finally we will use speech
ognition output for DA classification and segmentation.
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