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Abstract
We present an approach to dialogue management and interpreta-
tion that evaluates and selects amongst candidate dialogue moves
based on features at multiple levels. Multiple interpretation meth-
ods can be combined, multiple speech recognition and parsing hy-
potheses tested, and multiple candidate dialogue moves consid-
ered to choose the highest scoring hypothesis overall. We inte-
grate hypotheses generated from shallow slot-filling methods and
from relatively deep parsing, using pragmatic information. We
show that this gives more robust performance than using either ap-
proach alone, allowing n-best list reordering to correct errors in
speech recognition or parsing.
Index Terms: dialogue management, robust interpretation

1. Introduction
CSLI has been developing a multi-domain spoken-language dia-
logue management system for a number of years, and applied this
system to a range of applications, such as control of robotic devices
[1], intelligent tutoring [2], and interactive control of in-car devices
[3]. A primary concern is leveraging dialogue context to improve
the robustness of speech recognition (ASR) and dialogue interac-
tion [4]. This paper describes recent extensions to further address
the issue of robust interpretation. Multiple candidate hypotheses
from different sources (e.g. deep syntactic parsing and shallow
topic classification) are evaluated and assigned overall confidence
scores using features at multiple levels (e.g. acoustic, semantic
and context-based). Although initially motivated by the extension
to plug-and-play multi-device dialogue management [5], partic-
ularly for the in-car environment, the approach allows improved
selection from an n-best list of recognition and interpretation hy-
potheses, and it is this issue that we focus on here.

In our approach, all devices (and in fact, all possible inter-
pretation methods associated with each device) perform shallow
processing of the incoming utterance, each producing multiple
possible candidate dialogue moves. Potential device-move com-
binations are then scored against a number of features, including
speech-recognition and parse confidence, discourse context, cur-
rent device-under-discussion, and NP argument analysis. The de-
vice associated with the highest-scoring dialogue move is given
first option to process the utterance. A disambiguation question
may be generated if no device is a clear winner, or a confirmation
question if the winning bid is not scored high enough.

∗Cavedon’s contribution was performed while employed at CSLI,
Stanford University. This research was supported by the National Insti-
tute for Standards and Technology (NIST). We thank Fuliang Weng and
our partners at VW America and Robert Bosch Corporation, who (amongst
other things) developed the parser and semantic classifier used here.
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Device choice, move choice, and selection of best ASR/parser
othesis are thereby made simultaneously, rather than being
ed as independent processes. As well as allowing for princi-
device identification, this has the benefit of allowing compet-

interpretation hypotheses to be scored on the basis of multiple
rmation sources, including context. The highest scoring result
all may not correspond to the highest-confidence result from
ASR or parser n-best list alone; instead, n-best lists are effec-
y re-ordered based on device and dialogue context, allowing
ing errors such as incorrect PP-attachment to be automatically
ected. Confirmation and clarification behaviour can also be
rned not only by ASR or parse confidence, but by the over-
core. This results in measurable improvement with respect to
cting most appropriate candidate dialogue move.

Related Approaches: [6] combines ASR confidence scores
various intra-utterance linguistic features to re-order n-best

otheses; [7] also includes move bigram statistics. [8] uses simi-
eature combination to identify misrecognised utterances. More
ntly, [9] also include pragmatic information such as NP reso-
n, and simultaneously choose from an n-best list while iden-
ng misrecognition; they also divide misrecognised utterances
two overall confidence ranges, one for outright rejection and
for confirmation/clarification. Similarly [10] combines acous-
onfidences with semantic information, and [11] with bridging
rence resolution, in order to allow clarification on an integrated
s. We extend these techniques by considering the multi-device
tion, combining multiple interpretation techniques, and using

xtended set of features for scoring candidates.

2. Background
use an information-state update (ISU) approach to dialogue
agement [12, 4], which can handle richer dialogue phenom-
than finite-state-based approaches. We maintain a tree-based
el of dialogue context (including a structured move history as
as e.g. referents for anaphora resolution) together with a set of

ate rules defining the effect of dialogue moves on this state. In
dialogue move tree (DMT), each dialogue move is represented
tree node, and incoming moves are interpreted in context

ttachment to an appropriate open parent node (for example,
nswer moves attach to their corresponding WhQuestion

es). Update rules not only define the possible attachments but
r effects (e.g. adding new information and referents, triggering
tasks, activities and system responses).

Dialogue Move Scripting: Our system architecture is coded
ava, but in order to facilitate customization to new domains,
specification and addition of new plug-and-play devices to-
er with their dialogue capabilities, we provide a separate di-
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alogue move scripting language (partially illustrated in Listing 1;
see [5] for details). Scripts can be added or edited as text without
recompilation, and serve a number of purposes:

1. hierarchical definition of dialogue moves, allowing inher-
itance and re-use of existing moves, while allowing cus-
tomization to a specific domain;

2. mapping of utterance representations to appropriate dia-
logue moves, including arguments for device models;

3. definition of attachment rules for information-state update;

4. move-specific specification of output to be generated, for
disambiguation or requests for missing information.

Dialogue move scripts provide templates which give (possibly
underspecified) definitions of the various interpreted forms which
can trigger each type of move. Variables in the script correspond
to variables in the Activity Model describing the corresponding de-
vice (e.g. an MP3 device contains a play operation with a re-
quired playable-object argument). When an incoming utterance
matches the MP3 input template in Listing 1, the playable-object
script variable is filled by unification, and resolved to an object
from the device’s domain which then fills the corresponding slot
in the activity; this creates a new move hypothesis. Each move
type is also given a declarative specification of possible subsequent
dialogue move attachments (for example, reports of success or re-
quests for clarification by the system) plus certain of their update
effects (e.g. particular attachments may close tree branches, mak-
ing nodes no longer available as antecedents). Further details are
provided in [5].

3. Multiple Interpretation Methods
The general approach to triggering candidate dialogue moves al-
lows us to specify multiple interpretation methods in parallel.
Most systems use a single interpretation mechanism which is best
suited to the application at hand, be it e.g. an open-domain sta-
tistical parser, a domain-specific constraint-based grammar, or
keyword-spotting techniques. We extend this here to allow arbi-
trary multiple interpretation mechanisms, each producing its own
(independent) interpretation hypothesis and associated confidence.

We use a speech recognizer with a statistical language model,
a statistical dependency parser, and a probabilistic slot-filling clas-
sifier; the implementations are common across devices, although
at this stage in development the models themselves are trained on
device-specific data. The syntactic parser (a version of [13]) pro-
duces a dependency structure specifying head words, predicates,
arguments and grammatical relations; the semantic classifier (sim-
ilar to [14]) uses a maximum entropy approach [15] to produce
topic keywords and/or attribute-value pairs for the relevant do-
mains. Both produce scored lists of n-best candidates. Impor-
tantly, this approach means that we cannot assume a 1-to-1 map-
ping between utterance representations and device/move choice,
as might be the case with hand-built grammars or device-specific
ASR. It also means that the accuracy of a single interpretation
component (e.g. the parser) is lower than might be obtained by
hand-crafting. However, we can use our general approach to
scripting and scoring move hypotheses to combine and re-order
the individual hypotheses, increasing performance and robustness.

Dialogue move scripts (see above) can now be used to con-
struct multiple candidate dialogue moves for an utterance. This
is governed by the Input field (see Listing 1) for each move type,

whi
mat
tern
form
SEM
eral
com

mov
mov
high
spec
(e.g
have
com
cont
of th
the
poth
ther
(sha
mor
be u
requ
jecti
and
exam

In th
will

1

2

3

4

The
neou
and
stan

�
for

sco
if

els

if

�

func
of w

1

cal f
2

scrip

INTERSPEECH 2006 - ICSLP

2

ch specifies a set of patterns: if an utterance representation
ches, a candidate node of this type is created. These pat-
s specify an interpretation method as well as the interpreted

itself: SYN patterns match the output of the statistical parser,
CAT patterns match the output of the classifier (either a gen-
topic keyword or a slot-value pair), while AND patterns match
binations of the two.1

Each pattern is associated with a weight, used in the overall
e scoring function described in Section 4 below. This allows
es created from matches against deep structure to be scored
ly (e.g. SYN patterns in which predicate and arguments are
ified and matched against), shallow matches to be scored low
. simple SEMCAT topic matches), and combined matches to

intermediate scores (e.g. SEMCAT slot-value matches, or
binations of a SEMCAT topic classification with a SYN parse
aining a suitable NP argument). Depending on other elements
e scoring function (e.g. the ASR confidence associated with

hypothesised string being tested) and on competing move hy-
eses, low scores may lead to clarification being required (and
efore clarification will be more likely when only low-scoring
llow) patterns are matched). Behaviour can therefore be made
e robust: when deep parsing fails, a shallow hypothesis can
sed instead (clarifying/confirming this specific hypothesis if
ired depending on its confidence) rather than resorting to a re-
on or general clarification. Scores are currently set manually
determined by testing on sample dialogues; future work will
ine learning them from data.

4. Dialogue Move Selection
e general case, multiple possible candidate dialogue moves
be produced for a given utterance, for a number of reasons:

. multiple hypotheses from ASR/parser output;

. multiple interpretation methods (e.g. deep vs. shallow);

. multiple possible move types for a candidate interpretation;

. multiple antecedent nodes (active dialogue threads), includ-
ing multiple devices, for a particular move type.

se are not independent: we must consider all factors simulta-
sly, to allow an integrated scoring function for each candidate
thus consider the best overall. The skeleton algorithm for in-
tiating and selecting a dialogue move is therefore as follows:2

�
each open node O
foreach n-best list entry N

foreach matching script entry M
create candidate move

re all candidates
(score(top) >> score(second))
select top candidate

e
generate question to disambiguate

(score(selected-node) < threshold)
generate question to confirm

�

The interesting aspect of the above process is the scoring
tion. Dialogue move candidates are scored using a number
eighted features, ranging from speech-recognizer confidence,

Further general pattern types are available (e.g. LF for semantic logi-
orms, STRING for surface string keyword-matching).

Note that we will not create O ×N ×M candidates: only a subset of
t entries (if any) will match for each node and n-best entry.



INTERSPEECH 2006 - ICSLP
through to pragmatic features such as the “device in focus” and
recency of the DMT node the candidate would attach to. The full
list of features currently considered is shown in Table 1, although
those shown italicized are not currently used, either for reasons of
computational overhead (full referent resolution in a large knowl-
edgebase takes time) or lack of domain data (e.g. for move bi-
gram frequencies). Note the inclusion of features at many levels,
from acoustic recognition confidences through syntactic parse con-
fidence to semantic and pragmatic features.

Reordering n-best candidates: Choosing the overall highest-
scoring candidate therefore allows n-best list re-ordering: while
the n-best list rank and confidence are factors in the overall score,
other features may outweigh them, resulting in an initially lower-
ranked n-best entry becoming the highest-scoring dialogue move.

Initial testing and setting of scoring function weights was per-
formed on a manually constructed set of 400 test utterances for a
single device (a restaurant recommendation system), of which 300
were also used to train the statistical parser and 100 were unseen
variations. These were provided as manual transcriptions rather
than as ASR hypotheses. This leaves multiple parser hypotheses as
the main source of multiple dialogue move candidates. Develop-
ment results on this set were encouraging even with the restricted
subset of features from Table 1: looking at n-best parse reorder-
ing only, the percentage of sentences for which the correct parse is
chosen increased from 90% to 94%, a 41% reduction in error with
several common parse errors being corrected. A particular exam-
ple is incorrect PP-attachment (a notoriously difficult challenge for
statistical parsers). The example below (from a restaurant recom-
mendation scenario), shows the top two n-best list entries from the
syntactic parser:

� �
1. how about [a restaurant [in Grant]] [on Elm]
2. how about [a restaurant [in Grant] [on Elm]]

� �

Here, the second is lower-ranked but correct (i.e., both PPs
modify restaurant). In the corresponding dialogue moves gener-
ated from these parses, the second has two database constraints
filled (city and street name), while the first has just one, boosting
the overall score of the candidate move corresponding to the first
parse. Similar improvements are seen with examples involving
nominal modifiers:

� �
1. how about [a [[cheap] chinese] restaurant]
2. how about [a [cheap] [chinese] restaurant]
3. how about [a [cheap chinese] restaurant]

� �

Here the second parse is correct, treating cheap and chinese as
both independently modifying restaurant; the first takes cheap as
modifying chinese, and the third takes cheap chinese as a single
multi-word unit. Again, as the candidate move corresponding to
the second parse fills two database-query constraints (price level
and cuisine type), it scores highest overall.
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Method Set 1 Set 2

Top parse only 52.4% 30.8%
Classifier only n/a 60.5%

First good combination 75.3% 67.9%
Best scored combination 77.7% 72.8%

Table 2: Evaluation results

Evaluation: We performed an initial evaluation of the ap-
ch on independent test data. This was taken from a system
in which trials were conducted with 20 naive subjects for each
o devices independently (an MP3 player device and a restau-

selection (RS) device). Trials were conducted using ASR; all
ects were native US English speakers. With the MP3 device,
ects performed 11 tasks, providing about 1400 utterances; with
RS device, 9 tasks, producing just over 1000 utterances. Task
pletion rates were good (98% and 94% for the two devices);
antic interpretation accuracy was reasonable (f-scores calcu-

over the database constraints associated with each utterance
e 82.5% and 82.2%).

To assess the impact of our combined scoring approach, we
the logs from 3 test subjects and 2 similar runs performed

r the test (covering the same tasks but adding more vari-
of different types of query), giving a set of 222 utterances
ch were manually annotated for parse correctness. Of these,
nvolved simple dialogue moves (e.g. Yes/No-Answer or
firmation) which were all covered by the parser (and all
ectly parsed); and 56 involved speech recognition failures or
misrecognitions which only the shallow semantic classifier
d process. Hence we had 166 utterances (“Set 1”) on which
could evaluate parse re-ordering, and 81 utterances (“Set 2”)
valuate classifier/parser combination. Results are shown in
le 2: the integrated scoring option (“best scored combina-

(of parse and topic-classifier)”) clearly outperforms the 1-
parse and classifier-only versions. More interestingly, it also
erforms a baseline result (labelled “first good combination”)
eved by allowing the full n-best parse list, and combination
the classifier output, but searching down the n-best list and

ping as soon as a good combined hypothesis is found (above
ore threshold). This improvement corresponds to a 9.8% error
ction on Set 1 (15.4% on Set 2), showing that considering and
ing all hypotheses does give an appreciable improvement.

. Discussion, Future Work, Conclusions
e type comparison: The scoring function for feature com-
tion is currently manually defined. When comparing between
idate moves of the same type, this is not trivial; when compar-

candidates of different types it becomes even less so, as some
e types and some DMT attachment contexts will allow only a
et of the features to have meaningful values. However, com-
� �
User Command:play { // inherits from generic Command dialogue move

Input { // templates for triggering move from processed utterance
// full parse match: ‘‘play/start X’’
1.0 SYN{ s( features(mood(imperative)), predicate(#play/vb|#start/vb),

?arglist(obj:_playable-object,?sbj:*)) }
// topic classifier match
0.1 SEMCAT{ topic(play_item) } ... }

Producing { // templates for possible matching moves: e.g. confirmation; clarification question
... } ... }

� �
Listing 1: Sample dialogue move script for a play Command for an MP3 device
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parison between move types is essential, as two ASR hypotheses
with similar recognition scores may have very different possible
move types (compare e.g. the Command “Play a rock song by
Cher” with the Query “What rock songs are there?”). We are
therefore currently investigating the use of machine learning tech-
niques to improve on our current manual definitions, building on
the approach of [9] by using a wider feature set. With annotated
data the optimal weights of a scoring function that combines all
the features can be automatically learned.

Confirmation/clarification: Use of a score which essentially
combines confidence at many levels is also advantageous for con-
firmation and clarification strategies. We can use overall absolute
score to decide whether to accept a move, ask for explicit clari-
fication, implicitly confirm in the next system move, or reject it
outright [16] by checking against a range of predefined thresholds.
We can also compare the relative scores of the highest competi-
tors to decide whether to accept the winner unambiguously, or ask
a disambiguating clarification question. The threshold values are
currently specified manually in dialogue move scripts; a future di-
rection is to automatically learn optimal values.

Conclusions: Our general approach to interpretation and
dialogue move selection—creating multiple potential candidate
moves and scoring them via the combination of features from mul-
tiple sources—has been shown to increase robustness of dialogue
performance by re-ordering lists of n-best candidates. Future work
includes learning optimal weights for the scoring function, and op-
timal values for confirmation and error thresholds.
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Recognition features: ASR and parse probabilities;
ASR and parse n-best ranks;

Semantic features: topic classification for the parse (with score);
for dialogue moves spawning activities:

- number of input slots filled;
- number of resolved/unresolved/ambiguously resolved slots after NP resolution;

for queries about database objects:
- set of constraints sent to the knowledge base;
- cardinality of the set of knowledge base query results;

Contextual features: current most active node;
current activity;
position and recency of the parent node in the active node list;
dialogue move bi-gram frequencies, based on both tree attachment and temporal sequence

Table 1: Move Scoring Features


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	------------------------------
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Matthew Purver
	Also by Florin Ratiu
	Also by Lawrence Cavedon
	------------------------------

