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Abstract

This paper presents an objective speech quality measure which is
based on loudness patterns using the equivalent rectangular band-
width (ERB) scale. The proposed measure, called the loudness
pattern distortion (LPD), is computed from the differences be-
tween the loudness patterns of the original and processed speech.
The LPD measure takes into account the transmission through the
outer and middle ear, the calculation of an excitation pattern from
the physical spectrum, and the transformation of an excitation pat-
tern to a loudness pattern. The effectiveness of the proposed mea-
sure was demonstrated by experimental evaluations in comparison
with the standard ITU-T P.862 (PESQ) using three coded speech
database of the ITU-T P-series Supplementary 23.
Index Terms: speech quality, objective measure, loudness pattern

1. Introduction
A speech quality measure is highly desirable and beneficial in the
field of speech processing, especially as a valuable assessment
tool for the development of speech coding and enhancing tech-
niques. During the course of designing a speech compression sys-
tem, it is desirable to have a speech quality measure for indicat-
ing the amount of distortion introduced by the compression algo-
rithm and for optimizing the system structure. For example, in
mobile communications and voice over internet protocol (VoIP),
the speech signal is compressed into a compact representation be-
fore transmission and is reconstructed at the other end. The speech
encoding/decoding process invariably introduces distortion and a
speech quality measure allows for the relative comparison of var-
ious speech coding techniques. Commonly, two approaches, sub-
jective and objective, are used for measuring the speech quality.
Subjective measures are based on the perceptual ratings by a group
of listeners, who subjectively rank the quality of speech. The most
widely used subjective test is the absolute category rating (ACR)
method [1] which results in a mean opinion score (MOS). In the
ACR test, listeners rate the speech quality by using a five-point
scale, in which the quality is represented by five grades - excel-
lent(5), good(4), fair(3), poor(2), and bad(1). Typically, the ratings
are collected from a pool of listeners and the arithmetic mean of
their ratings forms the MOS ratings. While subjective opinions of
speech quality are preferred as the most trustworthy criterion for
speech quality, they are also time-consuming, expensive and not
reproducible. In contrast, objective measures, which assess speech
quality by using the extracted physical parameters, are less ex-
pensive to administer, save time, and give more consistent results.
Also, the results conducted at different times and with different
testing facilities can be directly compared. Thus, good objective
measures are highly desirable in practical applications.
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In the past decades, objective speech quality measures have re-
ed considerable attention [2, 3]. In general, objective measures
be divided into two groups. One is intrusive evaluation, which
sses speech quality by measuring the “distortion” between the
t and output signals, and mapping the distortion values to the
icted quality metric [4, 5, 6, 7]. The other is non-intrusive
uation, which assesses speech quality only based on the out-
speech signal of a system under test [8, 9, 10]. According to
physical parameters exploited, objective measures can be clas-
d into four groups: (i) time domain measures, (ii) linear pre-
ive coefficient (LPC) based measures, (iii) frequency domain
sures, and (iv) perception-based measures [2, 3]. Based on
ious research, it has been found that perception-based speech

lity measures exhibit higher correlations with subjective qual-
atings [3, 4, 6, 7, 9]. It is well known that that the peripheral
itory system of humans, which is highly consistent from one
on to another, plays an important role during speech quality
g. Normally, in a listening test, the auditory information con-
d by speech signal is first preprocessed by the peripheral audi-
system and the highly compacted data obtained are then sent
e high-level brain function. The subjective quality rating is

lly performed based on these data. Therefore, it is intuitive for
design an objective quality measure by emulating this biolog-

preprocessing and by comparing the reduced representations
e original and processed speech.

Currently almost all perception-based objective measures,
as techniques reported in [4, 6, 7, 9, 11, 12], are based on

cker’s auditory model [13], which has lead to the definition
e Bark scale. Recently, more accurate psycho-acoustical ex-

ments have lead to a revised Zwicker’s model, i.e. the Moore
Glasberg model (the M-G model) [14, 15, 16]. In the M-G
el, the notched noise method [14] was utilized to measure the

itory filter bandwidth rather than the classical masking meth-
involving a narrow-band masker and probe tone [13]. The M-
odel has lead to the equivalent rectangular bandwidth (ERB)
e. In general, on the ERB scale the auditory-filter bandwidth is
ller than on the Bark scale, a difference which becomes larger
lower frequencies. Moreover, the M-G model can be used to
er explain how equal-loudness contours change as a function
evel, why loudness remains constant as the bandwidth of a
d-intensity sound increases up to the critical bandwidth, and
loudness of partially masked sounds [17].

In this paper, we propose a novel objective speech quality mea-
, which is based on the loudness patterns of the M-G auditory
el for normal hearing. The proposed loudness pattern distor-
(LPD) measure emulates several properties of human audi-
system, such as the transmission through the outer and middle
the calculation of an excitation pattern from the input physi-
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Figure 1: The block diagram of the LPD measure
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Figure 2: The calculation of loudness pattern

cal spectrum, and the transformation of an excitation pattern to a
loudness pattern. The auditory properties of the M-G model will
lead us to a new objective quality measure in the perceptual space.

2. The loudness pattern distortion measure
The block diagram of the LPD measure is shown in Fig.1. The
time delay information is first estimated by using the cross-
correlation method as stated in [5]. After the time delay informa-
tion is calculated, both the original speech x and its coded version
y are then separately processed by identical operations, leading to
what we shall refer to as the loudness patterns, Lx and Ly , re-
spectively. The quality measure is then defined by an appropriate
distance between these two specific loudness patterns. The calcu-
lation of loudness pattern is shown in Fig. 2, which is based on
the M-G model reported in [14, 15, 16]. The procedure is briefly
formulated as follows.

2.1. Level normalization & IRS filtering

The level of the input speech is first normalized to -26 dBov and
the receive-side modified intermediate reference system (IRS) fil-
ter is then applied to reflect the characteristics of handsets used in
subjective listening tests[18].

2.2. Time-frequency mapping

The input speech signal with 8 kHz sampling rate were seg-
mented into frames of 32 ms with an overlap of 50%, denoted by
s(i), i = 1, ..., I . Each frame was transformed to the frequency
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ain using a Hamming window and a short-time FFT. The real
imaginary components were squared and added to obtain the
t-time power spectrum, P1(i, k), where k represents the fre-

ncy scale.

Transmission through the outer and middle ear

frequency response of the outer and middle ear was modelled
frequency dependent weighting function as below [12]

(k) =

−2.184

(
f(k)
1000

)
−0.8

+6.5e

(
−0.6

(
f(k)
1000

−3.3

)2
)

−10−3
(

f(k)
1000

)3.6

20 , (1)

re f(k) = k ·
8000
256

is in Hertz at the DFT bin k. The weighted
er spectrum becomes P2(i, k) = H(k) · P1(i, k).

Calculation of excitation pattern

excitation pattern represents the output level of successive au-
ry filters as a function of their center frequencies. Each audi-
filter represents the frequency selectivity of the inner ear at a

icular frequency, where the filter shape varies with the input
l. In the LPD measure, we used the ERB scale to represent
bandwidth of the auditory filters. While the ERB is a mea-
for the bandwidth of auditory filters, the ERB-rate is a value

he ERB scale which is conceptually related to the Bark scale
17]. The ERB and ERB-rate are approximated by the formu-
ERB/Hz = 24.7(4.37f/kHz + 1) and ERB-rate/ERB =
log10(4.37f/kHz + 1).
In the M-G model, instead of partitioning the excitation
sformation into two distinct steps of the spectrum integra-
over unit Bark-lengths and the frequency spreading as in

cker’s model [13], a more compact representation of the ex-
tion pattern E(fc) at frequency fc is given by E(fc) =
W (f, fc, P2)P2(f)df, where W (f, fc, P2) is the auditory fil-
and P2(f) is the input power spectrum. The auditory fil-
are level-dependent on the argument P2 and the shapes are
elled by the so-called roex-filter shapes (“rounded exponen-
”). The shape of a roex-filter is defined by W (f, fc, P2) =

p |f−fc|
fc

)
exp

(
−

|f−fc|
fc

)
.

The parameter p controls the slopes of the auditory filters. A
e precise modelling [14, 15, 16] assumes asymmetric auditory
rs parameterized by upper and lower slopes values pu and pl,
ectively. Correspondingly, in calculating the output of a given
r arising from a given component, the p value is computed
ending on whether the filter is centered above or below the fre-
ncy of that component, and the total input level of the auditory
r. For the slope of the low frequency skirt of the auditory filter,
variation can be described in terms of the parameter pl. Let Q
ote that input level in dB/ERB, and let pl(Q) denote the value

l at level Q, then pl(Q) = p(51)−
0.35p(51)(Q−51)

p(51,1k)
, where p(51)

e value of p at that center frequency for the input level of 51
ERB and p(51,1k) stands for the value of pl at 1 kHz for a in-
level of 51 dB/ERB. The value of p(51) can be calculated by
) = 4fc/ERB(fc). On the other hand, the changes in slope
e high-frequency skirt of the auditory filter with level tend to

ather small and correspondingly the value of pu is set to be the
e as p51. More details on the calculation of the slope p can be
d in [14, 15, 16].



2.5. Transformation from excitation patterns to loudness pat-
terns

A loudness pattern (loudness density) in sone per ERB-rate can be
calculated from the associated excitation pattern. While the ex-
citation pattern represents the distribution of excitation along the
basilar membrane, the loudness per ERB-rate (the specific loud-
ness pattern) corresponds more closely to the distribution of neural
activity. Accordingly, the specific loudness pattern is closely re-
lated to the subjective perception of speech signal. To calculate the
loudness pattern it requires the availability of a computational pro-
cedure such as the one given by Zwicker’s model [13]. Recently
a modified version of Zwicker’s model incorporating a more an-
alytical formulation was introduced by Moore and Glasberg [16].
This revised model has been shown to account more accurately for
various subjective loudness data. From the excitation patterns, the
loudness patterns are calculated for three different cases as follows
[16].

Case 1: IF (109
≥ E(fc) ≥ ETHRQ(fc)) THEN

N ′(fc) = C[(G(fc)E(fc) + A(fc))
α(fc)

− A(fc)
α(fc)] (2)

Case 2: IF (E(fc) > 109) THEN

N ′(fc) = C

(
E(fc)

1.115

)0.2

(3)

Case 3: IF (E(fc) < ETHRQ(fc)) THEN

N ′(fc) = C

(
2E(fc)

E(fc) + ETHRQ(fc)

)1.5

[(G(fc)E(fc) + A(fc))
α(fc)

− A(fc)
α(fc)], (4)

where C is a constant with the value of 0.047 and here the frame
index i is omitted for simplification. The frequency dependent
constants used are approximated by the following equations as
stated in [11],

G(f) =
ETHRQ(500Hz)

ETHRQ(f)
(5)

ETHRQ(f) = 1.4 + 0.4 × 100.3(f/kHz)−0.8

(6)

α(f) = 0.171 +
0.032085

0.1 + G(f)0.25
(7)

A(f) = 2.8 +
2

0.1 + G(f)0.25
. (8)

Next, the obtained specific loudness pattern across frequency is
summed to form the overall loudness pattern of a speech frame.
In practice, to achieve greater accuracy, the specific loudness is
calculated at 0.1-ERB intervals, and the sum is then divided by 10
as below,

Lx(i) =
1

10

U∑
ufc

=1

N ′
x(i, ufc), Ly(i) =

1

10

U∑
ufc

=1

N ′
y(i, ufc),

(9)

where U is the total number of auditory filters on the ERB scale
and ufc is the u-th auditory filter with the center frequency fc.

2.6. Frame selection and Computation of LPD

In the calculation of the LPD measure, only frames that meet or
exceed the set thresholds (in sone) in both Lx(i) and Ly(i) are
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re 3: The plots of the computed LPD values ver-
the condition-averaged MOS ratings. The dash lines
the fitting of two third-order polynomials. The left
e:EMOS = −0.0570t3+0.3856t2+2.5521t+4.1268; The
t curve:EMOS = 0.1431t3 −0.4946t2 −0.4503t+3.7708.

. For the original speech, the threshold was set to 15 sones
w the loudness of the peak frame in Lx. For the coded speech,
threshold was set to 20 sones below the loudness of the peak
e in Ly . Only frames that meet or exceed both of these sone

sholds are retained. Assuming that there are I ′ speech frames
ined, the LPD measure is calculated by:

LPD =
1

I ′

I′∑
i=1

[Lx(i) − Ly(i)] + Loffset, (10)

re Loffset is an offset constant.

3. Experimental results
preliminary evaluation of the proposed LPD measure, we per-
ed a comparison test with the ITU-T standard P.862 (PESQ)
The experimental data consist of 528 subjective MOS ratings

ch include three subjective MOS databases (English, French,
nese) obtained in listening opinion tests as described in Ex-
ment One of the ITU-T P-Series Supplement 23 [19]. Each of
e databases contains 44 sentence pairs spoken by four talkers

female and two male) and each sentence pair stands for one
dition under test. The correlation coefficient (denoted by ρ)
standard error of estimate (denoted by ε), defined in [2], were
to evaluate the performance. In order to predict MOS ratings,

used a third-order polynomial to fit the various scatter plots as
ested by [10], i.e.

EMOS = at3 + bt2 + ct + d. (11)

e t is the LPD values and EMOS is the corresponding esti-
ed MOS values as “predicted” by the fitted function.
Fig. 3 presents the computed LPD values versus the condition-
aged MOS ratings (132 subjective scores in total). From Fig.
can be observed that the values of MOS ratings exhibited an
metrical distribution with respect to the LPD values. In or-

to reflect this asymmetrical property, we used two third-order
nomials to fit the scatter plots as shown in Fig. 3. One is for

plots with negative LPD values while the other is for those with
-negative LPD values.



Table 1: Performance of the LPD measure compared with the
PESQ with condition-averaged MOS ratings

Speech Database ρ ε

LPD PESQ LPD PESQ

P.Sup23 Exp1A(French) 0.940 0.918 0.268 0.421
P.Sup23 Exp1D(Japanese) 0.915 0.937 0.277 0.251
P.Sup23 Exp1O(English) 0.945 0.941 0.266 0.316
Total (3 Databases) 0.895 0.869 0.352 0.403
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Figure 4: The predicted condition-averaged MOSs for the
whole total databases (three databases). *: the results of the
PESQ (ρ=0.8691,ε=0.4026); o: the results of the LPD measure
(ρ=0.8946,ε=0.3522).

The performance of the LPD measure was evaluated in terms
of the correlation coefficient and standard error of estimate be-
tween the actual MOS ratings and the output values of the LPD
measure, which were obtained after the third-order polynomial
regression analysis. Table II presents the experimental results of
the ITU-T standard P.862 (PESQ) and the LPD measure. Fig. 4.
shows the plots of the predicted results of the PESQ and the LPD
measure. As shown in Table II, the LPD measure outperformed the
P.862 for the subjective databases Exp1A and Exp1O but slightly
lowered for the database Exp1D. For the entire MOS database, the
correlation of the proposed method attained 0.8946 with a standard
error of 0.3522, which was better than that of the PESQ.

4. Conclusions

In this paper we presented a new objective speech quality mea-
sure which is based on the loudness patterns of the Moore and
Glasberg’s auditory model. The effectiveness of the proposed
loudness pattern distortion (LPD) measure was demonstrated by
experimental evaluations in comparison with the standard ITU-
T P.862 (PESQ). The experimental results show that the corre-
lation of the proposed measure reached 0.8946 across the entire
databases which is better than that of the standardized PESQ.
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